THE EUPERCOMPUTER COMPANY

Cray and the Quad-Core
Experience

HECToR Town User Meeting
London
22 April 2009

5/11/2009

Talk outline

e Upgrade details
* Dual-Core versus Quad-Core nodes
® Dual-Core versus Quad-Core
e System details

e Dual-Core to Quad-Core upgrades at other sites
e ORNL
e NERSC

e Application issues
e What are the issues?
e Selected HECToR results
* What can be done?

The Cray XT4 Processing Element:
Providing a bandwidth-rich environment

4 GB/sec
MPI Bandwidth

Cray
SeaStar2
Interconnect

6.5 GB/sec
Torus Link
Bandwidth

CCRANY

THE EUPERCOMPUTER COMPANY

Direct
Attached
Memory

10 GB/sec

Local Memory
Bandwidth
50 ns latency

5/11/2009 Slide 4

CCRANY

THE EUPERCOMPUTER COMPANY

The Cray XT4 Processing Element: 208 1F U P9 rade

Providing a bandwidth-rich environment

4 GB/sec
MPI Bandwidth

Replace with Quad-Core

Direct
Attached
Memory

12 GB/sec
Local Memory
Bandwidth

Cray 50 ns latency
/ SeaStar2
Interconnect

6.5 GB/sec Twice the flops/core

Torus Link Twice the # of cores

Bandwidth Half the injection bandwidth/core
60% the Memory bandwidth/core

5/11/2009 Slide 5

CCRANY

THE EUPERCOMPUTER COMPANY

Let’s Review: Dual-Core v. Quad-Core

Dual-Core Quad-Core
e Core e Core
» 2.8Ghz clock frequency * 2.3Ghz clock frequency
e SSE SIMD FPU (2flops/cycle = o SSE SIMD FPU (4flops/cycle = 9.2GF
5.6GF peak) peak)

Cache Hierarchy
e L1 Dcache/lcache: 64k/core
e L2 D/l cache: 512 KB/core
e L3 Shared cache 2MB/Socket

e Cache Hierarchy
e L1 Dcache/lcache: 64k/core
e L2 D/l cache: 1M/core

* SW Prefetch and loads to L1 e SW Prefetch and loads to L1,L2,L3

* Evictions and HW prefetch to L2 Evictions and HW prefetch to L1,L2,L3
* Memory e Memory

* Dual Channel DDR2 * Dual Channel DDR2

e 10GB/s peak @ 667MHz e 12GB/s peak @ 800MHz

» 8GB/s nominal STREAMSs e 10GB/s nominal STREAMs

ESE-N

What will HECToR look like?

e Cray XT4 Dual-Core - Today
63 TFlops

5664 nodes

11328 cores

2-way SMP on the node
6GB/node

667 MHz memory

e Cray XT4 Quad-Core - Tomorrow

208 TFlops

5664 nodes

22656 cores

4-way SMP on the node
8GB/node

800 MHz memory

THE EUPERCOMPUTER COMPANY

Quad-Core upgrades at other
sites

Jaguar — Cray XT4 e
Upgraded to 263 TeraFlops

* We have upgraded Jaguar from single-core to Dual-Core to Quad-Core
Opteron processors

Replaced 7,832 processors and added 15,664 2GB DIMMS

Srlﬁsigi 7,832
Memory / Core 2 GB
System Memory 62 TB
Disk Bandwidth 44 GB/s
Disk Space 900 TB
Node Size 4-core, 35 GF

CCRANY

THE EUPERCOMPUTER COMPANY

NERSC’s Cray XT4

e “Franklin” (NERSC-5)
e 102 Cabinets in 17 rows
e 9,660 nodes (19,320 cores)
e 39.5TBs Aggregate Memory (4 x 1GB DIMMs per node)

e Sustained performance: discussed later

e |nterconnect: Cray SeaStar2, 3D Torus
e >6 TB/s Bisection Bandwidth
e >7 GB/s Link Bandwidth

e Shared Disk: 400+ TBs

e Network Connections
* 24 x10 Gbps+ 16 x 1 Gbps
* 60 x 4 Gbps Fibre Channel

10

Franklin Quad-Core Upgrade

* In-place, no-interruption upgrade taking place between July and October,
2008.

All 9,672 nodes change from 2.6-GHz AMD®64 to 2.3-GHz Barcelona-64.

e QC nodes have 8 GB memory, same average GB/core as on DC Franklin.

e Memory from 667 MHz to 800 MHz.

THE EUPERCOMPUTER COMPANY

Initial HECToR Application
Results

CCRANY

THE EUPERCOMPUTER COMPANY

Helium

e Solves time-dependent Schrodinger
equation in full dimensionality

e Used to model interaction between an

l 454

intense linearly polarized laser light
and the Helium atom 1090
e Highly optimized for HPCx
Six months were spent re-engineering
the code specifically for this platform 11' 0.727
e Largest problem on HPCx — 1200
processors
50% of time is spent on 0363

communication

e |nitial simulations on HECToR — 2048
processors
5% of time is spent on communication

I 0,000

* The code authors are now preparing
to do simulations at the 800nm
wavelength, which are not possible on
HPCx

5/11/2009 13

Performance Data

CPU seconds

85000

80000

75000

70000

65000

60000

55000

50000

Helium Performance

100

200 300

Core Count

400

500

Quad Core
== Dual Core

700

600

500

400

300

200

100

CRANY

THE EUPERCOMPUTER COMPANY

Helium Scalability

Quad Core
== Dual Core
Ideal

100 200 300 400 500

Core Count

CCRANY

THE EUPERCOMPUTER COMPANY

CP2K

e Atomistic and molecular simulations of solid state, liquid and molecular
systems

e Using the freely available version of the code from
o http://cp2k.berlios.de/

e Using vendor benchmark input

e Exercises a large number of kernels
e Good balance of compute and communication

* Makes extensive use of numerical libraries
* BLAS
e ScalAPACK
o FFTW

Cray Proprietary 15
SEEa

CP2K : -
S
CP2K-HECToR(DC) vs QC

6000 -
5000 -
4000 -

% 3000 -

= —0—HECToR (DC)

—ii—-QC

2000 -
1000 o

CRANY

THE EUPERCOMPUTER COMPANY

Casino

e Quantum Monte Carlo code used extensively on HECToR by Prof. Dario Alfe
of UCL

e Approved for dCSE funding and supported by Lucian Anton, NAG.

Percentage Gain by Moving to Quad Core

main 4%

drift_diffuse T 13%
update_dbar I 18%
eval_dbar I
wfdet

P 171%

local_energy i 1%

jastro . 37p6

ewald -34% i

wfdet 1 13%
ee_realtive_distance | -26% e

-50% 0% 50% 100% 150% 200%

UM

Time(s)

700
600
500
400
300
200
100

UM Climate - HECToR (DC) vs QC

DC

=—-QC

100

200

300

Cores

400 500 600

200
180
160
140
120
100
80
60
40
20

Speedup

Cray Proprietary

CRANY

THE EUPERCOMPUTER COMPANY

UM Climate - HECToR (DC) vs QC

—m

100

200

300

Cores

400

500

600

DC
=—QC

18

CCRANY

THE EUPERCOMPUTER COMPANY

Quad-Core, More to the Point

e Doubled flops/clock, only if you use SSE128

e Very-Short-Vector Instructions

e Clock reduced from 2.8GHz — 2.3 GHz

e 18% clock speed reduction

e L2 Cache size has been reduced per-core, but shared L3 has
been added

e Essentially, more cache visible to the cores

e DDR2-800 memory has replaced DDR2-667
e 10.6GB/s->12.8GB/s (21% improvement)
* More total memory bandwidth and 2X as many memory controllers,
also 2X as many cores to use the BW.

* Symmetrical memory — 8GB/node provides full memory interleaving,
whereas 6GB/node does not

19
ESE-N

CCRANY

THE EUPERCOMPUTER COMPANY

What can be done?

e MPIis optimized for intra-node communication; however, message off the
node will contend for bandwidth requirements off the node

e OpenMP across the cores on the node will help

e Shared Cache is designed to help OpenMP reduce the applications
memory requirements

e Reduces the message traffic off the node

e Watch out for Libraries — are they Quad-Core enabled?

5/11/2009 Slide 20

What about those SSE instructions

e The Quad-Core is capable of generating 4 flops/clock in 64 bit mode and 8
flops/clock for 32 bit mode

e Assembler must contain SSE instructions

e Compilers only generate SSE instructions when it can vectorize the DO
loops
e Libraries must be Quad-Core enabled

Some Lessons from Quad Core

—_’//

e \ectorize

CCRANY

THE EUPERCOMPUTER COMPANY

SBLI — Direct Numerical
Simulation of Turbulence at Scale
on Cray XT4

Finite difference code for turbulent
boundary layers

*Higher-order central differencing, shock
preserving advection scheme from the
TVD family, entropy splitting of the Euler
terms

*Application areas include noise
production from wing sections - critical in
modern aircraft design

*Code scales to largest job queue on

HECTOoR - 8192 cores -> 5.4 TFlops SBLI Performance on Cray XT4
*HPCXx scaling stops at around 1200 6000
processors 5000
*Cray Centre of Excellence for HECToR 4000

have improved single CPU performance
of this code on HECToR - 20% speedup
over original version

GFlops

3000
5.4 TFlops sustained

o on 8192 cores

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

cores

APA analysis of code

e module load xt-craypat

e (Create the instrumented executable

* make hector
e Use compiler listings with —Minfo and -Mneginfo

e pat_build -0 apa pdns3d.x
® Run the experiment
* Run your simulation — aprun —n SNPROCS ./pdn3d.x+pat

e Create your report
e pat_report —o sample.txt *.xf

CRANY

THE EUPERCOMPUTER COMPANY

Sample information

| 86.2% | 17474 --| --|USER

|

|| 39.2% | 7953 | --| - |rhs_

3| | | | | jason/src/sbli_3.5/rhs_3d.f

Il
41| 23.2% | 4704 | 1068.80 | 18.8% |line.413

4)|| 3.1% | 629| 63.98| 9.4% [line.78
4)|| 2.9% | 592| 55.06| 8.6% |line.165
4)|| 2.7% | 539| 20.19| 3.7% |line.190
4)|| 2.3% | 476| 23.73| 4.8% |line.236
4)|| 1.8% | 371| 24.86| 6.4% |line.214
4)|| 1.8% | 356| 32.34| 8.5% |line.260

USER /rhs_ CRRANY"

THE EUPERCOMPUTER COMPANY

Time% 39.5%

Time 128.658205

Imb.Time 19.624435

Imb.Time% 13.4%

Calls 150
DATA_CACHE_MISSES 18.130M/sec 2260790340 misses
PAPI_TOT_INS 1445.103M/sec 180203670533 instr
PAPI_L1_DCA 757.287M/sec 94433319644 refs
PAPI_FP_OPS 842.208M/sec 105022916627 ops
User time (approx) 124.700 secs 324218781250 cycles
Cycles 124.700 secs 324218781250 cycles
User time (approx) 124.700 secs 324218781250 cycles
Utilization rate 96.9%

Instr per cycle 0.56 inst/cycle

HW FP Ops / Cycles 0.32 ops/cycle

HW FP Ops / User time 842.208M/sec 105022916627 ops 16.2%peak
HW FP Ops / WCT 816.294M/sec

HW FP Ops / Inst 58.3%
Computation intensity 1.11 ops/ref
MIPS 92486.59M/sec

MFLOPS 53901.30M/sec

Instructions per LD ST 1.91 inst/ref
LD & ST per D1 miss 41.77 refs/miss
D1 cache hit ratio 97.6%

LD ST per Instructions 52.4%

CRANY

THE EUPERCOMPUTER COMPANY

Large loop, which is not vectorizing

do k=1,nzp
do j=1,nyp
do i=1,nxp 413, Loop not vectorized: data dependency
wy(8) = wx(i,j,k,8)
wy(9) = wx(i,j,k,9)
wy(11) = wx(i,j,k,11)
wy(12) = wx(i,j,k,12)
wy(18) = wx(i,j,k,18)

dxidx = dxi_dx(i,j,IK)
dxidy = dxi_dy(i,j,IK)
detadx = deta_dx(i,j,IK)
detady = deta_dy(i,j,IK)

g22 = wy(18)*((wy(11)*dxidx
-wy(12)*detadx)
+(-wy(8)*dxidy
+wy(9)*detady))

& A AR

etc...

CRANY

THE EUPERCOMPUTER COMPANY

Try the Cray (X1/X2) compiler...

411. 1------ < do k=1,nzp

412 1 2-—-< do j=1,nyp ftn-6383 ftn: VECTOR File = rhs_3d.f, Line

=413

212 1 g x"< C\:\? I(Z; ’ix\jp\/x(i \kg) Aloopstarting at line 413 requires an
415' 12V Wy(g) _ wx(i’J',k’Q) estimated 56 vector registers at line
' y N b K 941; 24 of these have been preemptively
416. 12V wy(11) = wx(i,j,k,11) forceahon ey
417. 12V wy(12) = wx(i,j,k,12) '
218 1 g x wy(18) = wx(i,j,k,18) ftn-6204 ftn: VECTOR File = rhs_3d.f, Line
' , , . =413
420. 12V dxidx = dxi_dx(i,j,k) : : :
421 12V dxidy = dxi_dy(i.j.K) A loop starting at line 413 was vectorized.
422. 12V detadx = deta_dx(i,j,k)

423. 12V detady = deta_dy(i,j,k

Why is PGI not vectorizing this loop???

do k=1,nzp
do j=1,nyp

&P AP R

do i=1,nxp

wy() =wx(i,],k,8)
wy(9) = wx(i,j,k,9)
wy(11) = wx(i,j,k,11)
wy(12) = wx(i,j,k,12)
wy(18) = wx(i,j,k,18)

dxidx = dxi_dx(i,j,IK)
dxidy = dxi_dy(i,j,IK)
detadx = deta_dx(i,j,|IK)
detady = deta_dy(i,j,|IK)

922 = wy(18)*((wy(11)*dxidx
-wy(12)*detadx)
+(-wy(8)*dxidy
+wy(9)*detady))

etc...

CRANY

THE EUPERCOMPUTER COMPANY

After much looking around at this, the only
unusual thing | could see is the use of the
array wy() for loop temporaries.

This was done as a single declaration of
wy(50) was more compact then wy1, wy2,
wy3, etc...

Sample code to test this... AN
subroutine vect_test

implicit none
jason@nid00004:~/src/vect_test> ftn -fast -Minfo -
integer :: | Mneginfo -c vect_test.f90
real*8 :: wy(4),wx(100,4) /opt/xt-asyncpe/1.0a/bin/ftn: INFO: linux target is being
real*8 :: wy1,wy2,wy3,wy4,q11 used
vect_test:
do i=1,100 8, Loop not vectorized: data dependency
wy(1)=wx(i,1) 16, Generated vector sse code for inner loop
wy(2)=wx(i,2) Generated 4 prefetch instructions for this loop
wy(3)=wx(i,3)
wy(4)=wx(i,4)
q1 1= q11+wy(1)"wy(2)"wy(3)"wy(4)
end do
do i=1,100
wy1=wx(i,1)
wy2=wx(i,2)
wy3=wx(i,3)
wy4d=wx(i,4)
q11 = q11+wy1*wy2*wy3*wy4
end do

end subroutine vect_test

USER /rhs_ CRRANY"

THE EUPERCOMPUTER COMPANY

Time% 38.1%

Time 106.324202

Imb.Time 11.409116

Imb.Time% 9.8%

Calls 150
DATA_CACHE_MISSES 21.902M/sec 2242750389 misses
PAPI_TOT_INS 699.101M/sec 71588386163 instr
PAPI_L1_DCA 537.188M/sec 55008430462 refs
PAPI_FP_OPS 673.327M/sec 68949134785 ops
User time (approx) 102.401 secs 266241828125 cycles
Cycles 102.401 secs 266241828125 cycles
User time (approx) 102.401 secs 266241828125 cycles
Utilization rate 96.3%

Instr per cycle 0.27 inst/cycle

HW FP Ops / Cycles 0.26 ops/cycle

HW FP Ops / User time 673.327M/sec 68949134785 ops 12.9%peak
HW FP Ops / WCT 648.480M/sec

HW FP Ops / Inst 96.3%
Computation intensity 1.25 ops/ref
MIPS 44742.43M/sec

MFLOPS 43092.91M/sec

Instructions per LD ST 1.30 inst/ref
LD & ST per D1 miss 24 .53 refs/miss
D1 cache hit ratio 95.9%

LD ST per Instructions 76.8%

Some Lessons from Quad-Core

* \Vectorize

e Cache Block/Make efficient use of cache

CCRANY

THE EUPERCOMPUTER COMPANY

SBLI — Direct Numerical
Simulation of Turbulence at Scale
on Cray XT4

Finite difference code for turbulent
boundary layers

*Higher-order central differencing, shock
preserving advection scheme from the
TVD family, entropy splitting of the Euler
terms

*Application areas include noise
production from wing sections - critical in
modern aircraft design

*Code scales to largest job queue on

HECTOoR - 8192 cores -> 5.4 TFlops SBLI Performance on Cray XT4
*HPCXx scaling stops at around 1200 6000
processors 5000
*Cray Centre of Excellence for HECToR 4000

have improved single CPU performance
of this code on HECToR - 20% speedup
over original version

GFlops

3000
5.4 TFlops sustained

o on 8192 cores

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

cores

APA analysis of code

e module load xt-craypat

e Create the instrumented executable
* make hector
e pat_build -0 apa pdns3d.x
* Run the experiment
e Run your simulation —aprun —n SNPROCS ./pdn3d.x+pat

e Create your report
* pat_report —o sample.txt *.xf

Sampling experiment output
Table 1: Profile by Group, Function, and Line

Samp % | Samp| Imb.| Imb. |Group
Samp | Samp % | Function

4

| | | | Source

| | | | Line

| | | | PE='HIDE'
100.0% | 20270| --| --|Total
|
| 86.2% | 17474| --| --|USER

| 12.3% | 2488| --| --|deriv_dleta 2_

3| | | | | jason/src/sbli_3.5/cent2.f

I
4l 12.1% | 2455| 90.88| 3.6% |line.1824

CRANY

THE EUPERCOMPUTER COMPANY

e deriv_dleta 2 :cent2.f:line.1824 — a triple nested loop with a difference

calculation

deriv_dleta_2 original I SUPERCOMFUTEN CoMPANY

- _ e g

— e

do k=1-zhalo,nzp+zhalo
do j=1,nyp
do i=1-xhalo,nxp+xhalo
dfn(i,j,k) = (fn(i,j-2,k) - fn(i,j+2,k)
& +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)))*facty
& * hyr(j)
end do
end do

end do

CRANY

USER / deriV_d 1 eta_z_ THE SUPERCOMPFUTER COMPANY
Time% 12.2%
Time 39.830899
Imb.Time 2.933972
Imb.Time% 7.0%
Calls 2854
DATA_CACHE_MISSES 46.294M/sec 1508451014 misses
PAPI_TOT_INS 656.987M/sec 21407421197 instr
PAPI_L1_DCA 452.621M/sec 14748311652 refs
PAPI_FP_OPS 440.116M/sec 14340835118 ops
User time (approx) 32.584 secs 84718968750 cycles
Cycles 32.584 secs 84718968750 cycles
User time (approx) 32.584 secs 84718968750 cycles
Utilization rate 81.8%
Instr per cycle 0.25 inst/cycle
HW FP Ops / Cycles 0.17 ops/cycle

HW FP Ops / User time 440.116M/sec 14340835118 ops 8.5%peak
HW FP Ops / WCT 360.043M/sec

HW FP Ops / Inst 67.0%
Computation intensity 0.97 ops/ref
MIPS 42047.19M/sec

MFLOPS 28167.42M/sec

Instructions per LD ST 1.45 inst/ref
LD & ST per D1 miss 9.78 refs/miss
D1 cache hit ratio 89.8%

LD ST per Instructions 68.9%

Cache behaviour is quite poor

Why was original so bad?

do k=1-zhalo,nzp+zhalo
do j=1,nyp
do i=1-xhalo,nxp+xhalo
dfn(i,j,k) = (fn(i,j-2,k) - fn(i,j+2,k)

& +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)))*facty
& * hyr(j)
end do
end do
end do

Natural loop order above seems OK to me...

what the compiler thinks

CRANY

THE EUPERCOMPUTER COMPANY

dleta_2:
1820, Interchange produces reordered loop nest:
1822, 1820, 1824 do j=1,nyp
1824, Generated 4 alternate loops for the inner loop do k=1-zhalo,nzp+zhalo
Generated vector sse code for inner loop do i=1-xhalo,nxp+xhalo
Generated 4 prefetch instructions for this loop dfni,j,k) = (fn(i,j-2,k) - fn(i,j+2,k)
Generated vector sse code for inner loop & +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)))*facty
Generated 4 prefetch instructions for this loop & * hyr(j)
Generated vector sse code for inner loop end do
Generated 4 prefetch instructions for this loop end do
Generated vector sse code for inner loop end do

Generated 4 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop

Loop interchange ruins the cache behaviour
— compiler thought it was helping with hyr,
but didn’'t seem to consider fn accesses

CRANY

THE EUPERCOMPUTER COMPANY

Rewrite the loop?

dleta_2:

1822, Generated 4 alternate loops for the inner loop
Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop _ _
Generated vector sse code for inner loop hyrj = hyr(j)

Generated 4 prefetch instructions for this loop do i=1-xhalo,nxp+xhalo
Generated vector sse code for inner loop din(i,j.k) = (n(i,j-2,k) - in(i,j+2,k)

do k=1-zhalo,nzp+zhalo
do j=1,nyp

Generated 4 prefetch instructions for this loop & *;S-Od_O*(fn(',J” k) - fn(i,j-1,k)))*facty
Generated vector sse code for inner loop & hyrj

Generated 4 prefetch instructions for this loop end do

Generated vector sse code for inner loop eﬁgddgo

Generated 4 prefetch instructions for this loop

Stopped the loop interchange, and still getting inner loop vectorization

USER / deriv_d1eta 2

Time% 7.2%

Time 22.156190

Imb.Time 2.450521

Imb.Time% 10.1%

Calls 2854
DATA_CACHE_MISSES 36.943M/sec 594335578 misses
PAPI_TOT_INS 1342.373M/sec 21596266950 instr
PAPI_L1_DCA 921.836M/sec 14830620040 refs
PAPI_FP_OPS 892.677M/sec 14361505154 ops
User time (approx) 16.088 secs 41829125000 cycles
Cycles 16.088 secs 41829125000 cycles
User time (approx) 16.088 secs 41829125000 cycles
Utilization rate 72.6%

Instr per cycle 0.52 inst/cycle

HW FP Ops / Cycles 0.34 ops/cycle

HW FP Ops / Usertime 892.677M/sec 14361505154 ops 17.2%peak
HW FP Ops / WCT 648.194M/sec

HW FP Ops / Inst 66.5%
Computation intensity 0.97 ops/ref
MIPS 85911.88M/sec

MFLOPS 57131.35M/sec

Instructions per LD ST 1.46 inst/ref
LD & ST per D1 miss 24.95 refs/miss
D1 cache hit ratio 96.0%

LD ST per Instructions 68.7%

CRANY

THE EUPERCOMPUTER COMPANY

Some Lessons from Quad-Core
- — e e

* Vectorize
* Cache Block
e Don’t stride through memory

Bad Striding
(5) COMMON A(8,8,11DIM8),B(8,8,iidi ms8)
(59) DO 41090 K = KA, KE, -1
(60) DO 41090 J = JA, JE
(61) DO 41090 | = IA |E
(62 ACK L, 1,J3) = AK L 1,J3) - B(J,1,i,k)*A(K+L,
(63) * - B(J,2,i,k)*A(K+1, L, 1,2) - B(J,3,i,k)*A(K+1,
(64) * - B(J,4,i,k)*A(K+1, L, 1,4) - B(J,5,i,k)*A(K+1,
(65) 41090 CONTI NUE
(66)
PG

59, Loop not vectorized: loop count too small

60, Interchange produces reordered loop nest: 61, 60

Loop unrolled 5 times (completely unrolled)
61, Generated vector sse code for inner loop
Pathscale

(Ip41090.f:62) Non-contiguous array "A(_BLNK _.0.0)"

not vectorized.

(Ip41090.1:62) Non-contiguous array "A(_BLNK _.0.0)"

not vectorized.

(Ip41090.f:62) Non-contiguous array "A(_BLNK _.0.0)"

not vectorized.

(Ip41090.f:62) Non-contiguous array "A(_BLNK_ _.0.0)"

not vectorized.

reference exists

reference exists

reference exists

reference exists

CRANY

THE EUPERCOMPUTER COMPANY

L
o1 W
— — —

. Loop was
. Loop was
. Loop was

. Loop was
5/11/2009 43

CRANY

THE EUPERCOMPUTER COMPANY

Rewrite

(6) COVMON AA(IIDIM 8, 8,8),BB(11DIM 8,8, 8)

(95) DO 41091 K = KA, KE, -1

(96) DO 41091 J = JA, JE

() DO 41091 | = IA |E

(98) AA(L, K L,J) = AA(IL,K L, J) - BB(I,J,1, K*AA(I, K+1, L, 1)
(99) * - BB(1,J,2,K)*AA(I, K+1, L, 2) - BB(I,J,3, K *AA(I, K+1, L, 3)
(100) * - BB(I,J,4,K)*AA(I, K+1, L, 4) - BB(I,J,5, K)*AA(I, K+1, L, 5)
(101) 41091 CONTI NUE

PGI

95, Loop not vectorized: loop count too small

96, Outer loop unrolled 5 times (completely unrolled)

97, Generated 3 alternate loops for the inner loop
Generated vector sse code for inner loop
Generated 8 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 8 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 8 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 8 prefetch instructions for this loop

Pathscale
(1 p41090. f: 99) LOOP WAS VECTORI ZED.

5/11/2009 44

MFLOPS

CRANY

THE EUPERCOMPUTER COMPANY

LP41090
1200
1000 -
- -
- = . - -'
= - -
- - -
800 ﬂg’_.--.-'--. .
. .—‘ » =g riginal PS-Quad
r_ - = B= Restructured PS-Quad
e==g==(riginal PS-Dual
600 ’ “ = B= Restructured PS-Dual
(4

e==g===(riginal PGI-Dual

- A" = B= Restructured PGI-Dual
e=g==riginal PGI-Quad
- = - = B Restructured PGI-Quad
- -
\ -
0 T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Vector Length

5/11/2009 45

CCRANY

THE EUPERCOMPUTER COMPANY

Some Lessons from Quad-Core

e Vectorize
Cache Block

* Don’t stride through memory

e Use Quad-Core enabled Libraries

e Loading xtpe-quadcore module ensures you get the Quad-Core enabled

versions of libsci, and the appropriate compiler flags to generate code
for Quad-Core

5/11/2009 46

CRANY

THE EUPERCOMPUTER COMPANY

Some Lessons from Quad-Core

* Vectorize

* Cache Block

* Don’t stride through memory

* Use Quad-Core enabled Libraries

® Pre-post Receives

5/11/2009 47

CRANY

THE EUPERCOMPUTER COMPANY

Some Lessons from Quad-Core

* Vectorize

* Cache Block

* Don’t stride through memory

* Use Quad-Core enabled Libraries
* Pre-post Receives

® |nvestigate OpenMP

5/11/2009 48

CRANY

THE EUPERCOMPUTER COMPANY

Some Lessons from Quad-Core

* Vectorize

* Cache Block

* Don’t stride through memory

* Use Quad-Core enabled Libraries
* Pre-post Receives

* |nvestigate OpenMP

e Memory per core decrease

5/11/2009 49

CASINO

e Quantum Monte Carlo (QMC) electronic structure
calculations for finite and periodic systems

e Fortran 90 + MPI
e Note: No OpenMP

e Over 100,000 lines of code

* One of EPSRC’s HECToR benchmark codes
* Now used heavily in production

CCRANY

THE EUPERCOMPUTER COMPANY

Casino — The Problems

e 1. Memory

e User wants to use VERY LARGE wavefunction data sets
e 2 copies (~4GB each) do not fit on HECToR’s 6GB (dual core) nodes
» Effective performance is HALF (since must run in single core mode)

e Solution:

e Array is read only (once loaded) so only 1 copy is really needed
e Use asingle SHARED array (between MPI tasks on node)

e Note: Too big a job to re-implement whole code in OpenMP

ESE-N

CCRANY

THE EUPERCOMPUTER COMPANY

Casino — shared memory

e Method

e Establish configuration (PEs on each node, and Master PE for each
node)

e Use Posix or System V shared memory to allocate large array on each
node

e Map this space onto the users array (Fortran 90 Pointer)

e Shared memory issues
e Can’t use Posix as /dev/shm is not user writeable
o => Use System V shared memory

BUT: System V shared memory uses int (32 bits) for size

=> Build up full size out of Sys V blocks of 1 GByte each

o and map successive blocks to address of previous + 1
Gbyte

» Keep track of all blocks allocated, so they can be ‘DE-allocated’

Delete all blocks (once mapped on all PEs) so that the shared segments

disappear on program termination or failure/crash.

ESE-N

Get help with all of this!

HECToR webpage — documentation, etc
o http://www.hector.ac.uk/

CSE training courses and support
e http://www.hector.ac.uk/cse/

e Upcoming Cray Centre of Excellence Workshop
» Specifically targeted at Quad-Core
e Dates still to be finalized
e Will be advertised on the HECToR webpage

Cray — http://www.cray.com/
e Documentation — http://docs.cray.com/

Cray Proprietary

CCRANY

THE EUPERCOMPUTER COMPANY

53

CCRANY

THE EUPERCOMPUTER COMPANY

Concerned about your codes performance on Quad-Core?

e Give it to usl!

e Jason Beech-Brandt — jason@cray.com

e Kevin Roy — kroy@cray.com

e We can run your code on Quad-Core today to give you some advance
notice on how your code will perform —and some pointers for improving
that performance

e Source, makefile, and dataset

Cray Proprietary 54

