
HECToR Town User Meeting

London

22 April 2009

5/11/2009 2

� Upgrade details

� Dual-Core versus Quad-Core nodes

� Dual-Core versus Quad-Core

� System details

� Dual-Core to Quad-Core upgrades at other sites

� ORNL� ORNL

� NERSC

� Application issues

� What are the issues?

� Selected HECToR results

� What can be done?

5/11/2009 3

Direct
Attached
Memory

HyperTransport

4 GB/sec
MPI Bandwidth AMD

Opteron

5/11/2009 Slide 4

10 GB/sec
Local Memory

Bandwidth
50 ns latency

HyperTransport

Cray
SeaStar2

Interconnect
6.5 GB/sec
Torus Link
Bandwidth

Direct
Attached
Memory

HyperTransport

4 GB/sec
MPI Bandwidth

Replace with Quad-Core

208 TF Upgrade

AMD
Opteron

5/11/2009 Slide 5

12 GB/sec
Local Memory

Bandwidth
50 ns latency

HyperTransport

Cray
SeaStar2

Interconnect
6.5 GB/sec
Torus Link
Bandwidth

Twice the flops/core
Twice the # of cores

Half the injection bandwidth/core
60% the Memory bandwidth/core

Dual-Core

� Core

� 2.8Ghz clock frequency

� SSE SIMD FPU (2flops/cycle =

5.6GF peak)

� Cache Hierarchy

Quad-Core

� Core

� 2.3Ghz clock frequency

� SSE SIMD FPU (4flops/cycle = 9.2GF

peak)

� Cache Hierarchy

� L1 Dcache/Icache: 64k/core
� Cache Hierarchy

� L1 Dcache/Icache: 64k/core

� L2 D/I cache: 1M/core

� SW Prefetch and loads to L1

� Evictions and HW prefetch to L2

� Memory

� Dual Channel DDR2

� 10GB/s peak @ 667MHz

� 8GB/s nominal STREAMs

� L1 Dcache/Icache: 64k/core

� L2 D/I cache: 512 KB/core

� L3 Shared cache 2MB/Socket

� SW Prefetch and loads to L1,L2,L3

� Evictions and HW prefetch to L1,L2,L3

� Memory

� Dual Channel DDR2

� 12GB/s peak @ 800MHz

� 10GB/s nominal STREAMs

6

� Cray XT4 Dual-Core - Today

� 63 TFlops

� 5664 nodes

� 11328 cores

� 2-way SMP on the node

� 6GB/node

� Cray XT4 Quad-Core - Tomorrow

� 208 TFlops

� 5664 nodes

� 22656 cores

� 4-way SMP on the node

� 8GB/node� 6GB/node

� 667 MHz memory

� 8GB/node

� 800 MHz memory

March 18, 2009Cray Proprietary 7

March 18, 2009Cray Proprietary 8

� We have upgraded Jaguar from single-core to Dual-Core to Quad-Core

Opteron processors

� Replaced 7,832 processors and added 15,664 2GB DIMMS

Quad-Core

Processors
7,832

Memory / Core 2 GB

System Memory 62 TB

Disk Bandwidth 44 GB/s

Disk Space 900 TB

Node Size 4-core, 35 GF

� “Franklin” (NERSC-5)

� 102 Cabinets in 17 rows

� 9,660 nodes (19,320 cores)

� 39.5 TBs Aggregate Memory (4 x 1GB DIMMs per node)

� Sustained performance: discussed later

� Interconnect: Cray SeaStar2, 3D Torus

� >6 TB/s Bisection Bandwidth

� >7 GB/s Link Bandwidth

� Shared Disk: 400+ TBs

� Network Connections

� 24 x 10 Gbps + 16 x 1 Gbps

� 60 x 4 Gbps Fibre Channel

10

� In-place, no-interruption upgrade taking place between July and October,

2008.

� All 9,672 nodes change from 2.6-GHz AMD64 to 2.3-GHz Barcelona-64.

� QC nodes have 8 GB memory, same average GB/core as on DC Franklin.

� Memory from 667 MHz to 800 MHz.

11

Cray Proprietary 12

� Solves time-dependent Schrodinger
equation in full dimensionality

� Used to model interaction between an
intense linearly polarized laser light
and the Helium atom

� Highly optimized for HPCx
� Six months were spent re-engineering

the code specifically for this platformthe code specifically for this platform

� Largest problem on HPCx – 1200
processors
� 50% of time is spent on

communication

� Initial simulations on HECToR – 2048
processors
� 5% of time is spent on communication

� The code authors are now preparing
to do simulations at the 800nm
wavelength, which are not possible on
HPCx

5/11/2009 13

55000

60000

65000

70000

75000

80000

85000

C
P

U
 s

e
co

n
d

s

Helium Performance

Quad Core

Dual Core

Helium Scalability
50000

55000

0 100 200 300 400 500

Core Count

0

100

200

300

400

500

600

700

0 100 200 300 400 500

Core Count

Helium Scalability

Quad Core

Dual Core

Ideal

� Atomistic and molecular simulations of solid state, liquid and molecular

systems

� Using the freely available version of the code from

� http://cp2k.berlios.de/

� Using vendor benchmark input

� Exercises a large number of kernels� Exercises a large number of kernels

� Good balance of compute and communication

� Makes extensive use of numerical libraries

� BLAS

� ScaLAPACK

� FFTW

Cray Proprietary 15

4000

5000

6000

CP2K-HECToR(DC) vs QC

Cray Proprietary 16

0

1000

2000

3000

0 100 200 300 400 500 600

T
im

e
(s

)

Cores

HECToR (DC)

QC

� Quantum Monte Carlo code used extensively on HECToR by Prof. Dario Alfe

of UCL

� Approved for dCSE funding and supported by Lucian Anton, NAG.

4%

13%

18%

171%
-32%

1%

37%

-34%

13%

-26%

-50% 0% 50% 100% 150% 200%

main

drift_diffuse

update_dbar

eval_dbar

wfdet

local_energy

jastro

ewald

wfdet

ee_realtive_distance

Percentage Gain by Moving to Quad Core

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

T
im

e
(s

)

Cores

UM Climate - HECToR (DC) vs QC

DC

QC

Cray Proprietary 18

Cores

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600

S
p

e
e

d
u

p

Cores

UM Climate - HECToR (DC) vs QC

DC

QC

� Doubled flops/clock, only if you use SSE128

� Very-Short-Vector Instructions

� Clock reduced from 2.8GHz – 2.3 GHz

� 18% clock speed reduction

� L2 Cache size has been reduced per-core, but shared L3 has � L2 Cache size has been reduced per-core, but shared L3 has

been added

� Essentially, more cache visible to the cores

� DDR2-800 memory has replaced DDR2-667

� 10.6GB/s -> 12.8GB/s (21% improvement)

� More total memory bandwidth and 2X as many memory controllers,

also 2X as many cores to use the BW.

� Symmetrical memory – 8GB/node provides full memory interleaving,

whereas 6GB/node does not

19

� MPI is optimized for intra-node communication; however, message off the

node will contend for bandwidth requirements off the node

� OpenMP across the cores on the node will help

� Shared Cache is designed to help OpenMP reduce the applications

memory requirements memory requirements

� Reduces the message traffic off the node

� Watch out for Libraries – are they Quad-Core enabled?

5/11/2009 Slide 20

� The Quad-Core is capable of generating 4 flops/clock in 64 bit mode and 8

flops/clock for 32 bit mode

� Assembler must contain SSE instructions

� Compilers only generate SSE instructions when it can vectorize the DO

loops

� Libraries must be Quad-Core enabled� Libraries must be Quad-Core enabled

5/11/2009 Slide 21

� Vectorize

5/11/2009 22

•Finite difference code for turbulent
boundary layers
•Higher-order central differencing, shock
preserving advection scheme from the
TVD family, entropy splitting of the Euler
terms
•Application areas include noise

SBLI – Direct Numerical
Simulation of Turbulence at Scale
on Cray XT4

•Application areas include noise
production from wing sections - critical in
modern aircraft design
•Code scales to largest job queue on
HECToR – 8192 cores -> 5.4 TFlops
•HPCx scaling stops at around 1200
processors
•Cray Centre of Excellence for HECToR
have improved single CPU performance
of this code on HECToR – 20% speedup
over original version

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
F

lo
p

s

cores

SBLI Performance on Cray XT4

5.4 TFlops sustained

on 8192 cores

� module load xt-craypat

� Create the instrumented executable

� make hector
� Use compiler listings with –Minfo and -Mneginfo

� pat_build –O apa pdns3d.x

� Run the experiment� Run the experiment

� Run your simulation – aprun –n $NPROCS ./pdn3d.x+pat

� Create your report

� pat_report –o sample.txt *.xf

| 86.2% | 17474 | -- | -- |USER
||---
|| 39.2% | 7953 | -- | -- |rhs_
3| | | | | jason/src/sbli_3.5/rhs_3d.f
||||---
4||| 23.2% | 4704 | 1068.80 | 18.8% |line.413
4||| 3.1% | 629 | 63.98 | 9.4% |line.78
4||| 2.9% | 592 | 55.06 | 8.6% |line.1654||| 2.9% | 592 | 55.06 | 8.6% |line.165
4||| 2.7% | 539 | 20.19 | 3.7% |line.190
4||| 2.3% | 476 | 23.73 | 4.8% |line.236
4||| 1.8% | 371 | 24.86 | 6.4% |line.214
4||| 1.8% | 356 | 32.34 | 8.5% |line.260
||||===

USER / rhs_
--

Time% 39.5%
Time 128.658205
Imb.Time 19.624435
Imb.Time% 13.4%
Calls 150
DATA_CACHE_MISSES 18.130M/sec 2260790340 misses
PAPI_TOT_INS 1445.103M/sec 180203670533 instr
PAPI_L1_DCA 757.287M/sec 94433319644 refs
PAPI_FP_OPS 842.208M/sec 105022916627 ops
User time (approx) 124.700 secs 324218781250 cycles
Cycles 124.700 secs 324218781250 cycles
User time (approx) 124.700 secs 324218781250 cyclesUser time (approx) 124.700 secs 324218781250 cycles
Utilization rate 96.9%
Instr per cycle 0.56 inst/cycle
HW FP Ops / Cycles 0.32 ops/cycle
HW FP Ops / User time 842.208M/sec 105022916627 ops 16.2%peak
HW FP Ops / WCT 816.294M/sec
HW FP Ops / Inst 58.3%
Computation intensity 1.11 ops/ref
MIPS 92486.59M/sec
MFLOPS 53901.30M/sec
Instructions per LD ST 1.91 inst/ref
LD & ST per D1 miss 41.77 refs/miss
D1 cache hit ratio 97.6%
LD ST per Instructions 52.4%

do k=1,nzp
do j=1,nyp

do i=1,nxp
wy(8) = wx(i,j,k,8)
wy(9) = wx(i,j,k,9)
wy(11) = wx(i,j,k,11)
wy(12) = wx(i,j,k,12)
wy(18) = wx(i,j,k,18)

413, Loop not vectorized: data dependency

dxidx = dxi_dx(i,j,IK)
dxidy = dxi_dy(i,j,IK)
detadx = deta_dx(i,j,IK)
detady = deta_dy(i,j,IK)

q22 = wy(18)*((wy(11)*dxidx
$ -wy(12)*detadx)
$ +(-wy(8)*dxidy
$ +wy(9)*detady))

etc…

ftn-6383 ftn: VECTOR File = rhs_3d.f, Line
= 413
A loop starting at line 413 requires an

estimated 56 vector registers at line
941; 24 of these have been preemptively

forced to memory.

ftn-6204 ftn: VECTOR File = rhs_3d.f, Line
= 413

411. 1------< do k=1,nzp
412. 1 2----< do j=1,nyp
413. 1 2 V--< do i=1,nxp
414. 1 2 V wy(8) = wx(i,j,k,8)
415. 1 2 V wy(9) = wx(i,j,k,9)
416. 1 2 V wy(11) = wx(i,j,k,11)
417. 1 2 V wy(12) = wx(i,j,k,12)
418. 1 2 V wy(18) = wx(i,j,k,18)
419. 1 2 V
420. 1 2 V dxidx = dxi_dx(i,j,k) = 413

A loop starting at line 413 was vectorized.420. 1 2 V dxidx = dxi_dx(i,j,k)
421. 1 2 V dxidy = dxi_dy(i,j,k)
422. 1 2 V detadx = deta_dx(i,j,k)
423. 1 2 V detady = deta_dy(i,j,k)

do k=1,nzp
do j=1,nyp

do i=1,nxp
wy(8) = wx(i,j,k,8)
wy(9) = wx(i,j,k,9)
wy(11) = wx(i,j,k,11)
wy(12) = wx(i,j,k,12)
wy(18) = wx(i,j,k,18)

dxidx = dxi_dx(i,j,IK)

After much looking around at this, the only
unusual thing I could see is the use of the
array wy() for loop temporaries.
This was done as a single declaration of
wy(50) was more compact then wy1, wy2,
wy3, etc…

dxidx = dxi_dx(i,j,IK)
dxidy = dxi_dy(i,j,IK)
detadx = deta_dx(i,j,IK)
detady = deta_dy(i,j,IK)

q22 = wy(18)*((wy(11)*dxidx
$ -wy(12)*detadx)
$ +(-wy(8)*dxidy
$ +wy(9)*detady))

etc…

subroutine vect_test
implicit none

integer :: i
real*8 :: wy(4),wx(100,4)
real*8 :: wy1,wy2,wy3,wy4,q11

do i=1,100
wy(1)=wx(i,1)
wy(2)=wx(i,2)
wy(3)=wx(i,3)
wy(4)=wx(i,4)

jason@nid00004:~/src/vect_test> ftn -fast -Minfo -
Mneginfo -c vect_test.f90
/opt/xt-asyncpe/1.0a/bin/ftn: INFO: linux target is being
used
vect_test:

8, Loop not vectorized: data dependency
16, Generated vector sse code for inner loop

Generated 4 prefetch instructions for this loop

wy(4)=wx(i,4)
q11 = q11+wy(1)*wy(2)*wy(3)*wy(4)

end do
do i=1,100
wy1=wx(i,1)
wy2=wx(i,2)
wy3=wx(i,3)
wy4=wx(i,4)
q11 = q11+wy1*wy2*wy3*wy4

end do

end subroutine vect_test

USER / rhs_
--

Time% 38.1%
Time 106.324202
Imb.Time 11.409116
Imb.Time% 9.8%
Calls 150
DATA_CACHE_MISSES 21.902M/sec 2242750389 misses
PAPI_TOT_INS 699.101M/sec 71588386163 instr
PAPI_L1_DCA 537.188M/sec 55008430462 refs
PAPI_FP_OPS 673.327M/sec 68949134785 ops
User time (approx) 102.401 secs 266241828125 cycles
Cycles 102.401 secs 266241828125 cycles
User time (approx) 102.401 secs 266241828125 cyclesUser time (approx) 102.401 secs 266241828125 cycles
Utilization rate 96.3%
Instr per cycle 0.27 inst/cycle
HW FP Ops / Cycles 0.26 ops/cycle
HW FP Ops / User time 673.327M/sec 68949134785 ops 12.9%peak
HW FP Ops / WCT 648.480M/sec
HW FP Ops / Inst 96.3%
Computation intensity 1.25 ops/ref
MIPS 44742.43M/sec
MFLOPS 43092.91M/sec
Instructions per LD ST 1.30 inst/ref
LD & ST per D1 miss 24.53 refs/miss
D1 cache hit ratio 95.9%
LD ST per Instructions 76.8%

� Vectorize

� Cache Block/Make efficient use of cache

5/11/2009 32

•Finite difference code for turbulent
boundary layers
•Higher-order central differencing, shock
preserving advection scheme from the
TVD family, entropy splitting of the Euler
terms
•Application areas include noise

SBLI – Direct Numerical
Simulation of Turbulence at Scale
on Cray XT4

•Application areas include noise
production from wing sections - critical in
modern aircraft design
•Code scales to largest job queue on
HECToR – 8192 cores -> 5.4 TFlops
•HPCx scaling stops at around 1200
processors
•Cray Centre of Excellence for HECToR
have improved single CPU performance
of this code on HECToR – 20% speedup
over original version

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
F

lo
p

s

cores

SBLI Performance on Cray XT4

5.4 TFlops sustained

on 8192 cores

� module load xt-craypat

� Create the instrumented executable

� make hector

� pat_build –O apa pdns3d.x

� Run the experiment

� Run your simulation – aprun –n $NPROCS ./pdn3d.x+pat� Run your simulation – aprun –n $NPROCS ./pdn3d.x+pat

� Create your report

� pat_report –o sample.txt *.xf

Table 1: Profile by Group, Function, and Line

Samp % | Samp | Imb. | Imb. |Group
| | Samp | Samp % | Function
| | | | Source
| | | | Line
| | | | PE='HIDE'

100.0% | 20270 | -- | -- |Total
|--
| 86.2% | 17474 | -- | -- |USER
||---

� deriv_d1eta_2_:cent2.f:line.1824 – a triple nested loop with a difference

calculation

|| 12.3% | 2488 | -- | -- |deriv_d1eta_2_
3| | | | | jason/src/sbli_3.5/cent2.f
||||---
4||| 12.1% | 2455 | 90.88 | 3.6% |line.1824

||---

do k=1-zhalo,nzp+zhalo

do j=1,nyp

do i=1-xhalo,nxp+xhalo

dfn(i,j,k) = (fn(i,j-2,k) - fn(i,j+2,k)

& +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)))*facty

& * hyr(j)

end do

end do

end do

USER / deriv_d1eta_2_
--
Time% 12.2%
Time 39.830899
Imb.Time 2.933972
Imb.Time% 7.0%
Calls 2854
DATA_CACHE_MISSES 46.294M/sec 1508451014 misses
PAPI_TOT_INS 656.987M/sec 21407421197 instr
PAPI_L1_DCA 452.621M/sec 14748311652 refs
PAPI_FP_OPS 440.116M/sec 14340835118 ops
User time (approx) 32.584 secs 84718968750 cycles
Cycles 32.584 secs 84718968750 cycles
User time (approx) 32.584 secs 84718968750 cycles
Utilization rate 81.8%

� Cache behaviour is quite poor

Utilization rate 81.8%
Instr per cycle 0.25 inst/cycle
HW FP Ops / Cycles 0.17 ops/cycle
HW FP Ops / User time 440.116M/sec 14340835118 ops 8.5%peak
HW FP Ops / WCT 360.043M/sec
HW FP Ops / Inst 67.0%
Computation intensity 0.97 ops/ref
MIPS 42047.19M/sec
MFLOPS 28167.42M/sec
Instructions per LD ST 1.45 inst/ref
LD & ST per D1 miss 9.78 refs/miss
D1 cache hit ratio 89.8%
LD ST per Instructions 68.9%

do k=1-zhalo,nzp+zhalo

do j=1,nyp

do i=1-xhalo,nxp+xhalo

dfn(i,j,k) = (fn(i,j-2,k) - fn(i,j+2,k)

& +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)))*facty

& * hyr(j)

end do

end do

end do

� Natural loop order above seems OK to me…

� Let’s see what the compiler thinks

d1eta_2:
1820, Interchange produces reordered loop nest:

1822, 1820, 1824
1824, Generated 4 alternate loops for the inner loop

Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop

do j=1,nyp
do k=1-zhalo,nzp+zhalo

do i=1-xhalo,nxp+xhalo
dfn(i,j,k) = (fn(i,j-2,k) - fn(i,j+2,k)

& +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)))*facty
& * hyr(j)

end do
end doGenerated 4 prefetch instructions for this loop

Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop

end do
end do

Loop interchange ruins the cache behaviour
– compiler thought it was helping with hyr,
but didn’t seem to consider fn accesses

do k=1-zhalo,nzp+zhalo
do j=1,nyp
hyrj = hyr(j)
do i=1-xhalo,nxp+xhalo

dfn(i,j,k) = (fn(i,j-2,k) - fn(i,j+2,k)
& +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)))*facty
& * hyrj

end do
end do

end do

d1eta_2:
1822, Generated 4 alternate loops for the inner loop

Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 4 prefetch instructions for this loop end doGenerated 4 prefetch instructions for this loop

Stopped the loop interchange, and still getting inner loop vectorization

USER / deriv_d1eta_2_
--
Time% 7.2%
Time 22.156190
Imb.Time 2.450521
Imb.Time% 10.1%
Calls 2854
DATA_CACHE_MISSES 36.943M/sec 594335578 misses
PAPI_TOT_INS 1342.373M/sec 21596266950 instr
PAPI_L1_DCA 921.836M/sec 14830620040 refs
PAPI_FP_OPS 892.677M/sec 14361505154 ops
User time (approx) 16.088 secs 41829125000 cycles
Cycles 16.088 secs 41829125000 cycles
User time (approx) 16.088 secs 41829125000 cycles
Utilization rate 72.6%
Instr per cycle 0.52 inst/cycleInstr per cycle 0.52 inst/cycle
HW FP Ops / Cycles 0.34 ops/cycle
HW FP Ops / User time 892.677M/sec 14361505154 ops 17.2%peak
HW FP Ops / WCT 648.194M/sec
HW FP Ops / Inst 66.5%
Computation intensity 0.97 ops/ref
MIPS 85911.88M/sec
MFLOPS 57131.35M/sec
Instructions per LD ST 1.46 inst/ref
LD & ST per D1 miss 24.95 refs/miss
D1 cache hit ratio 96.0%
LD ST per Instructions 68.7%

� Vectorize

� Cache Block

� Don’t stride through memory

5/11/2009 42

(5) COMMON A(8,8,IIDIM,8),B(8,8,iidim,8)

(59) DO 41090 K = KA, KE, -1
(60) DO 41090 J = JA, JE
(61) DO 41090 I = IA, IE
(62) A(K,L,I,J) = A(K,L,I,J) - B(J,1,i,k)*A(K+1,L,I,1)
(63) * - B(J,2,i,k)*A(K+1,L,I,2) - B(J,3,i,k)*A(K+1,L,I,3)
(64) * - B(J,4,i,k)*A(K+1,L,I,4) - B(J,5,i,k)*A(K+1,L,I,5)
(65) 41090 CONTINUE
(66)

PGI

5/11/2009 43

PGI
59, Loop not vectorized: loop count too small
60, Interchange produces reordered loop nest: 61, 60

Loop unrolled 5 times (completely unrolled)
61, Generated vector sse code for inner loop

Pathscale
(lp41090.f:62) Non-contiguous array "A(_BLNK__.0.0)" reference exists. Loop was
not vectorized.
(lp41090.f:62) Non-contiguous array "A(_BLNK__.0.0)" reference exists. Loop was
not vectorized.
(lp41090.f:62) Non-contiguous array "A(_BLNK__.0.0)" reference exists. Loop was
not vectorized.
(lp41090.f:62) Non-contiguous array "A(_BLNK__.0.0)" reference exists. Loop was
not vectorized.

(6) COMMON AA(IIDIM,8,8,8),BB(IIDIM,8,8,8)

(95) DO 41091 K = KA, KE, -1
(96) DO 41091 J = JA, JE
(97) DO 41091 I = IA, IE
(98) AA(I,K,L,J) = AA(I,K,L,J) - BB(I,J,1,K)*AA(I,K+1,L,1)
(99) * - BB(I,J,2,K)*AA(I,K+1,L,2) - BB(I,J,3,K)*AA(I,K+1,L,3)
(100) * - BB(I,J,4,K)*AA(I,K+1,L,4) - BB(I,J,5,K)*AA(I,K+1,L,5)
(101) 41091 CONTINUE

PGI
95, Loop not vectorized: loop count too small

5/11/2009 44

95, Loop not vectorized: loop count too small
96, Outer loop unrolled 5 times (completely unrolled)
97, Generated 3 alternate loops for the inner loop

Generated vector sse code for inner loop
Generated 8 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 8 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 8 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 8 prefetch instructions for this loop

Pathscale
(lp41090.f:99) LOOP WAS VECTORIZED.

LP41090

600

800

1000

1200

M
F

L
O

P
S

Original PS-Quad

Restructured PS-Quad

Original PS-Dual

Restructured PS-Dual

5/11/2009 45

0

200

400

600

0 50 100 150 200 250 300 350 400 450 500

Vector Length

M
F

L
O

P
S

Restructured PS-Dual

Original PGI-Dual

Restructured PGI-Dual

Original PGI-Quad

Restructured PGI-Quad

� Vectorize

� Cache Block

� Don’t stride through memory

� Use Quad-Core enabled Libraries

� Loading xtpe-quadcore module ensures you get the Quad-Core enabled

versions of libsci, and the appropriate compiler flags to generate code versions of libsci, and the appropriate compiler flags to generate code

for Quad-Core

5/11/2009 46

� Vectorize

� Cache Block

� Don’t stride through memory

� Use Quad-Core enabled Libraries

� Pre-post Receives

5/11/2009 47

� Vectorize

� Cache Block

� Don’t stride through memory

� Use Quad-Core enabled Libraries

� Pre-post Receives

� Investigate OpenMP

5/11/2009 48

� Vectorize

� Cache Block

� Don’t stride through memory

� Use Quad-Core enabled Libraries

� Pre-post Receives

� Investigate OpenMP

� Memory per core decrease

5/11/2009 49

� Quantum Monte Carlo (QMC) electronic structure

calculations for finite and periodic systems

� Fortran 90 + MPI

� Note: No OpenMP

� Over 100,000 lines of code

� One of EPSRC’s HECToR benchmark codes� One of EPSRC’s HECToR benchmark codes

� Now used heavily in production

� 1. Memory

� User wants to use VERY LARGE wavefunction data sets

� 2 copies (~4GB each) do not fit on HECToR’s 6GB (dual core) nodes

� Effective performance is HALF (since must run in single core mode)

� Solution:

� Array is read only (once loaded) so only 1 copy is really needed

� Use a single SHARED array (between MPI tasks on node)
� Note: Too big a job to re-implement whole code in OpenMP� Note: Too big a job to re-implement whole code in OpenMP

� Method

� Establish configuration (PEs on each node, and Master PE for each

node)

� Use Posix or System V shared memory to allocate large array on each

node

� Map this space onto the users array (Fortran 90 Pointer)

� Shared memory issues

� Can’t use Posix as /dev/shm is not user writeable� Can’t use Posix as /dev/shm is not user writeable

� => Use System V shared memory

� BUT: System V shared memory uses int (32 bits) for size

� => Build up full size out of Sys V blocks of 1 GByte each

� and map successive blocks to address of previous + 1

Gbyte

� Keep track of all blocks allocated, so they can be ‘DE-allocated’

� Delete all blocks (once mapped on all PEs) so that the shared segments

disappear on program termination or failure/crash.

� HECToR webpage – documentation, etc

� http://www.hector.ac.uk/

� CSE training courses and support

� http://www.hector.ac.uk/cse/

� Upcoming Cray Centre of Excellence Workshop

� Specifically targeted at Quad-Core� Specifically targeted at Quad-Core

� Dates still to be finalized

� Will be advertised on the HECToR webpage

� Cray – http://www.cray.com/

� Documentation – http://docs.cray.com/

Cray Proprietary 53

� Give it to us!

� Jason Beech-Brandt – jason@cray.com

� Kevin Roy – kroy@cray.com

� We can run your code on Quad-Core today to give you some advance � We can run your code on Quad-Core today to give you some advance

notice on how your code will perform – and some pointers for improving

that performance

� Source, makefile, and dataset

Cray Proprietary 54

