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Molecular Dynamics: What is it?

 Theoretical tool for modelling the detailed 
microscopic behaviour of many different 
types of systems, including gases, liquids, 
solids, surfaces and clusters.

 In an MD simulation, the classical 
equations of motion governing the 
microscopic time evolution of a many 
body system are solved numerically, subject 
to the boundary conditions appropriate for 
the geometry or symmetry of the system.



Molecular Dynamics

 Can be used to monitor the microscopic 
mechanisms of energy and mass transfer in 
chemical processes, and dynamical properties 
such as absorption spectra, rate constants 
and transport properties can be calculated.

 Can be employed as a means of sampling 
from a statistical mechanical ensemble and 
determining equilibrium properties.  These 
properties include average thermodynamic 
quantities (pressure, volume, temperature, 
etc.), structure, and free energies along 
reaction paths. 



Example: Argon
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Lennard-Jones Potential
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Equations of Motion
 Force on atom i due to atom j:

 Total force on atom i:

 Newton 2:

 So can update position by, e.g., Verlet's 
algorithm                              

f ij=−∇V (r ij)
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Boundary Conditions

 Open – biopolymer 
simulations

 Stochastic 
boundaries – 
biopolymers

 Hard wall 
boundaries – pores, 
capillaries

 Periodic 
boundaries – most 
MD simulations

2D Cubic Periodic:



So What Can We Calculate?

 Kinetic Energy:

 Temperature:

 Configuration Energy:

 Pressure:

 Specific heat:
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What Else?

 Pair correlation (Radial Distribution Function):

 Structure  factor:

 Note: S(k) available from diffraction 
experiments
• e.g. Diamond, ISIS
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So How Does It Scale?

 Provided we can cut off the potential …
• Each atom interacts with a finite volume

• Within that volume on average there is a constant 
number of atoms

Related to the density of the system

• So the evaluation of the force on each atom on 
average takes a time that is independent of 
system size

• So classical MD is O(N) as we have to evaluate the 
forces on N atoms for each time step

 BUT – can we always cut off the 
potential?



No!!!!

 Consider a radius σ atom interacting with a 
uniform “sea” by a 1/rn potential

 The energy of interaction is
 

 This diverges for n≤3; such potentials are 
termed long ranged
• The problem is that the volume element grows 

faster than the potential decays

• Get conditionally convergent sums
 Is this important?
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Yes!!!!

 The fundamental interaction of chemistry is 
the Coulomb potential

 So as we can't cut off the potential we have 
to sum every pair
• Which is quite a large number in a system with 

periodic boundary conditions (have to include all 
images!)

• And therefore might take quite a long time!

V (r ij)=
qi q j
r ij



Ewald Summation

Get round this by use of the Ewald Sum
 Takes advantage of the periodic nature of the 

system to evaluate the long range terms
 Effectively splits the potential into two parts

• Short ranged
Can cut off, won't talk about more here

• Long ranged but not singular at r=0
Use Fourier techniques to evaluate
This is what we are interested in

V (r)=
erfc(β r)

r

V (r)=
erf (β r)
r



Long Range Terms
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Structure Factor
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not quite as the atoms are almost certainly not 
on a nice regular grid 



The Particle Mesh Approximation

 So can we calculate the structure factor by 
only sampling on a  regular grid?
• If so can calculate it using a FFT

 Yes! 
 Number of ways, most commonly used in MD 

is the Smooth Particle Mesh Ewald method 
due to Darden et al.:

e
2π i

mμuμ

Κμ ≈bμ(mμ) ∑
kμ=−∞

∞

M n(uμ−kμ)e
2π i

mμ kμ

Κμ



SPME

M
n
 are the cardinal B-splines of order n

They have some nice properties including:
 Easily evaluated by a simple recurrence
 Differentiable n–2 times

• Forces

 M
n
(u) is non-zero only in the range 0<u<n

• Only need evaluate at grid points near each atom

• So effectively a short range interaction!

e
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1 Evaluate

2 Fourier transform Q(k) → Q(m) 

3

4 Inverse Fourier transform V(m)  V(→ k)

5 From Q(k), V(k) easy to calculate energy and 
forces

SPME Steps
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So…

Therefore:
 To evaluate short ranged terms we only need 

to know the positions of the atoms near to 
the atom of interest

 To evaluate long range terms we
• Need to evaluate terms on the grid points near the 

reference atom

• But also need a FFT

Thus when planning how to do this in parallel 
we should use a decomposition that reflects the 
spatial locality



DL_POLY – What is it?

 General purpose parallel (classical) MD 
simulation software 

 Originally funded by CCP5 
 Written in modularised Fortran95 with 

MPI1+MPI-I/O
 1994 – 2011: DL_POLY_2 (RD) by W. Smith 

& T.R. Forester
 2003 – 2011: DL_POLY_3 (DD) by I.T. 

Todorov & W. Smith
 Available free of charge (under licence) to 

University researchers (provided as code) 
and at cost to industry



Widely Used
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How well does it work?



Two Main Versions
 DL_POLY_4 (version 1.2)

• Parallelisation based on domain decomposition 

• limits up to ≈2.1×109 atoms with inherent 
parallelisation

i.e. 231

• Full force field and molecular description with rigid 
body description

 DL_POLY Classic  (version 1.6)

• Replicated Data parallelisation, limits up to ≈30,000 
atoms with good parallelisation up to ~64 cores

• Full force field and molecular description

• Hyper-dynamics, Temperature Accelerated Dynamics, 
Solvation Dynamics, Path Integral MD
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Domain Decomposition

 So domain decomposition fits the short range 
terms very nicely

 But not “standard” library parallel 3D FFTs
• FFTW, IBM's PESSL, Cray's SciLib all use a 

decomposition by planes (“slabs”)
 So two choices:

1)Use a library routine, but this will require an 
expensive data redistribution

2)Write an FFT that uses the domain decomposed 
form directly – DaFT

●  But now we need to parallelise the 1D FFTs



So how DaFT is it?

Without time for redistribution Including time for redistribution



Moral of this story

 Have to use the data decomposition that fits 
the problem
• Sometimes “force fitting” a standard library may 

not be the best solution
Libraries for distributed data problems are hard:

o ~Infinitely different ways to distribute the data
o Have to use best distribution for whole application, 

not just the library routine
 Redistribution will (eventually) kill you

o Somebody from NAG shouldn't be saying this!



So How to Parallelise a 1D FFT?

X (k )=∑
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 “Decimation in frequency”

• Sande-Tukey Algorithm



Graphically



So for a 3D FFT

 The method is obvious!
• Do the x transforms in parallel

• Then do the y transforms

• And finally the z

 No nasssty transposes
• So no mpi_alltoallvs

Much  longer messages

• Communication purely along the principle 
directions  of the process grid

• If 512=8*8*8 cores only need to get the 1D 
transforms to scale to 8 cores

• BUT more data needs to be sent



So DaFT for the 1D transforms...

 Log
2
(P) communication steps

• Obviously communicate all at once
Sending V/P amount of data

• Big messages
Doing many FFTs at once

 Followed by a standard serial FFT library call

 Inverse FFT can be done by “Decimation in 
Time” – essentially the reverse of the above

 First a standard serial FFT library call
 Then Log

2
(P) communication steps

• Also undoes the reordering, but won't go into this



But

 This only works on powers of 2 numbers of 
processes

 And the problem size might not naturally fit 
onto such a number of processors
• Restrictions due to cutoff

 Scientist
• Might use more procs than he/she needs

Poor scaling?

• Might scale up the problem size to fit
 Both a waste of computer budget
 Thus dCSE funded to reduce this restriction 

on core counts



Work Funded

 Funded: to allow P=2nx30-2x50-1

 What actually done – allow P to be any 
number
• But performance will be poor if includes a large 

prime factor



Mixed Radix

X (k )=∑
j=0

N−1

x ( j)e
2π i
N

jk

X (N 2 k 1+k 2)=∑
j1=0

N 1−1 [e
2π i
N

j1k 2]( ∑
j 2=0

N 2−1

x(N 1 j 2+ j1)e
2π i
N 2

j 2k 2)e
2π i
N 1

j1k 1



So if have multiple factors

 So I split the prime factors into two sets
• Short

Small primes
Usually raised to high powers
Done by full FFT algorithm
Code designed to make this set easily added to

• Long
Larger primes
Usually raised to low powers
Done by simple DFT algorithm
Note if the power raised to is 1 DFT=FFT

 Note though any number of cores the length 
of the FFT must still be a multiple of P
• Not in practice a problem



An Example

 If P
x
=2n*L 

• First do 2n DFTs of length N
x
/2n each split over L 

cores
Simultaneously
Need to circulate data – double buffered systolic loop 

found best

• Next apply the phase (“twiddle”) factors

• Finally do L FFTs of length N
x
/L each split over 2n 

cores
Simultaneously

 And then similarly for y and z



Other Issues

 The domain decomposition algorithm in 
DL_POLY had to be generalised to any 
number of cores

 Recast as an optimisation problem
• Want to minimise amount of data sent

• Related to the the sum of the surface areas of the 
domains

 c.f. Halo exchange

• Nice side effect of 3D, tends to factorise the long 
factors – 1728 = (22*3)*(22*3)*(22*3)



So How Well Does It Work

 If not a power of 2 how hard hit is the 
performance?
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Briefly

 Other work by Valène Pellissier focused on 
profiling and optimising DL_POLY
• Loss in performance as the number of cores in the 

node has increased
 Valène is now based in France so I'll give a 

quick overview of some of her work
• Full report going up on the web page



Profiling

 DL_POLY_4 was profiled extensively
• Main tests on a large biomolecule 

 Problem areas identified include
• Frozen atoms in general

Conditionals in inner loops but most simulations have no 
frozen atoms

• Link cell pairs
Conditionals in inner loops avoided by slight change of 

algorithm

• Ewald routines
 Improved vectorisation – see later

• Constraints
Build list of constrained atoms avoids conditionals in 

inner loops



Ewald Summation

 Problem: Inner loop short and of variable 
length (typically 1-12)

 Solution:
• Length of loop can be determined outside main 

loop nest

• Therefore use a select construct to choose outside 
the loop an unrolled version

• Allows vectorising over both inner and second 
innermost loop

• Early compiler versions dramatic improvements: 
189s  109s!→

• Compilers getting better but still ~20% 
improvement to do it manually.



Overall Improvement

 Rather case dependent but each 
improvement gives around 10-35% 
improvement
• Depends on number of cores as well

 So whole run times around 10-25% better 
due to Valène's work
• XE6 now faster than the XT4!



Summary

 Through dCSE funded work  DL_POLY_4 has
• Been made more flexible by removing restrictions 

due to the FFT
Can run on any number of cores now

• Run faster due to identifying hotspots and 
optimising
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