
Boosting the scaling
performance of CASTEP:

Enabling next generation HPC
for next generation science

Dominik Jochym

STFC Rutherford Appleton Laboratory
4th October 2011

Outline

1.  MPI collective optimisations of I/O

2.  Optimisation of error reporting

CASTEP is…
•  A general-purpose ‘first principles’ atomistic

modeling code
•  Based on density functional theory

Written in
•  Fortran 95 + extensions
•  BLAS/LAPACK for linear algebra
•  FFT libraries (where available)
•  MPI for parallel communication

CASTEP can…
•  Compute the electronic density
•  Determine the atomic configuration and cell
•  Simulate molecular dynamics (Born-Oppenheimer,

path-integrals, variable cell)
•  Calculate band-structures and density of states
•  Compute various spectra (optical, IR, Raman, NMR,

XANES...)
•  plus linear response, population analysis, ELF,

TDDFT and more…

Key CASTEP components
•  Kohn-Sham equations

•  In a plane-wave basis

•  Wavefunction coefficients
wvfn%coeffs(1:nG,1:nbands,1:nkpts,1:nspins)

Hk[n] bks(r) = ✏bks bks(r)

 bks(r) =
X

G

cGbkse
i(G+k)·r

Parallel distribution

Three data
distribution
strategies

1.  k-points
2.  g-vectors
3.  bands

3.3. DATA 43

Master node of g-vector group

G
-vector G

roup 4

K-point group 1

K-point group 2

K-point group 3

K-point group 4

G
-vector G

roup 3

G
-vector G

roup 1

G
-vector G

roup 2

Key

A node

Root node

Master node of k-point group

Figure 3.1: A diagrammatic representation of the parallel distribution strategy with 4 g-vector
groups on 16 nodes. The g-vector groups are represented by the columns of nodes and the
k-point groups by rows. The root node is a master node of both g-vector and k-point groups
1.

Checkpoints and wavefuntions
•  HECToR limited to a 12 hour run time,

checkpoint and restart mechanism required
•  Wavefunction manipulation can require

collection and redistribution of data
Problems
•  Long checkpoint write/read times
•  MPI ‘unexpected buffer’ error

Cause of the problem?
•  Many point-to-point MPI send/receive calls

•  When it works, comms can get expensive

•  When it doesn’t, crash with MPI ‘unexpected

buffer error’

•  Temporary measures in place that blocked
bands together

How to improve?
•  CDG requested that backwards compatibility

with existing checkpoint files was kept,
including post-processing tools

•  So MPI-IO is not an option

•  Our approach: use MPI collectives instead of
point-to-point communications

Wave_write

•  Use MPI collective over g-vectors to gather
each band on gv-masters

•  Pass each band to its band-master

•  Band-masters pass data to root to write out

•  Data is written “as is”, with grid data

Wave_write timings

Wave_read
•  Not just a simple reverse of wave_write, also

need to cater for changes in parallel distribution
and Γ to all-k-point conversion

•  Approach:
•  Read in grid data
•  Read in (block of) bands
•  Distribute for correct k-point and band to gv-

masters
•  Re-order data for current g-vector distribution
•  gv-masters scatter the data

Wave_read timings

No.$processing$
elements$

Version5.5
read$

Prototype$
collectives$
read$

Collectives$
write$

24$ 16.78$ 14.74$ 7.63$

48$ 22.03$ 15.97$ 7.72$

96$ 32.90$ 18.57$ 7.88$

192$ 57.61$ 23.94$ 8.13$

384$ 113.47$ 34.80$ 8.42$

Table$II:$Benchmark$times$(in$seconds)$for$wave_read$and,forcomparison,$
wave_write.$

Further wave_read optimisation
•  Used CASTEP’s trace module to profile code

and identified two bottlenecks
1.  Read of each band data
2.  Reordering of g-vector distributed data

•  Solutions
1.  Array index order on read of band data
2.  Use a many-one vector subscript to store map

between old and new g-vector distribution
An indirect index is then used to prepare the
data for scattering

Wave_read/write summary
No.$
processing$
elements$

Version5.5
read$

Prototype$
collectives$
read$

Optimised$
collectives$
read$

Version5.5
write$

Collectives$
write$

24$ 16.78$ 14.74$ 9.15$ 7.09$ 7.63$

48$ 22.03$ 15.97$ 9.20$ 7.23$ 7.72$

96$ 32.90$ 18.57$ 9.23$ 9.85$ 7.88$

192$ 57.61$ 23.94$ 9.36$ 19.49$ 8.13$

384$ 113.47$ 34.80$ 9.60$ 70.48$ 8.42$

$

Table$III:$Benchmark$times$(in$seconds)$for$wave_read$and$wave_write.$

More of the same…
•  Apply the same principles to

•  Wave_apply_symmetry – phonon
calculations

•  Wave_reassign – variable basis set
calculations

•  Density_write/read

•  Pot_write/read

Part 1 Summary
Optimisations allow

•  Larger phonon and TDDFT calculations
•  Restart of band parallel runs

Available in current 5.5.2 release version

CASTEP error reporting
•  Creates empty <seed>.nnnn.err files
•  On error, all processes write to their .err
Problems

•  Load on filesystem at start of run
•  Clean up of empty files at end of run
•  Slow ‘ls’ command on some systems
•  Redundant information from repeated error

messages

How to improve?
•  Open .err files only when an error condition is

reached
•  Move .err setup from io_initialise to its own

routine, io_open_stderr, called from error
reporting routines io_abort and
io_allocate_abort

•  Occasionally extra crash information placed
in .err – make io_open_stderr public and
check if .err unit is open

More control
•  Still need to address message duplication
•  Extra argument to io_abort to allow developer

control over which processes report an error
•  ‘A’ – all
•  ‘F’ – farm master
•  ‘R’ – calculation root
•  ‘K’ – k-point masters
•  ‘G’ – g-vector masters
•  ‘B’ – band masters

Summary
Two successful optimisation projects

•  Collectives for data I/O and manipulation

ü  Available in current CASTEP release

•  Enhanced error reporting

ü  Included in developer CVS, ready for upcoming

version 6.0 release

