
David Scott
EPCC

The University of Edinburgh

Scaling
Turbulence

Applications
to Thousands of Cores

September 28, 2009 Scaling Turbulence Applications 2

Outline

Background

Current Code

The Problem

The Proposed Solution

Refactoring the Code

Status

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 3

Background (Collaborators)

Working with Gary Coleman and Roderick Johnstone
of Southampton University

They are members of UKTC

Joachim Hein (EPCC) who proposed the work and
discusses the work with me from time to time

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 4

Background (History)

3D simulation of the Ekman Boundary Layer (EBL)

Originally developed 20 years ago (G. Coleman)

There was a vector version

Then a version for HPCx
 (R. Johnstone and G. Coleman)

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 5

Background (Current Domain Sizes)

x, y: horizontal

z: vertical

Nx, Ny, Nz = 420, 1260, 151 or

 768, 2304, 204

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 6

Background (Transforms)

A Jacobi transform is performed on the vertical
dimension (z)

Fourier transforms are performed on the horizontal
dimensions (x and y)

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 7

Current Code (Vertical Transform)

Transformation of the z dimension

The y dimension is distributed across processors

On each processor loops over the y sub-range and
the x dimension are performed

Within these loops a Jacobi transform is performed
along the z direction

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 8

Current Code (Horizontal Transforms)

Transformation of the x and y dimensions

The z dimension is distributed across processors

On each processor a loop over the z sub-range is performed

Within this loop
 * For each x a FT along the y direction is performed, then
 * For each y a FT along the x direction is performed

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 9

Current Code (Decomposition)

1 dimensional processor grid

Each processor gets several planes

Perform FFT in two of the three directions

Single All-to-all before performing Jacobi in third direction

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 10

Current Code (Processors)

The maximum number of processors that can be used

 = max(Ny, Nz)

 = Nz (for the domains chosen)

 = 151 or 204

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 11

The Problem

Investigating significantly larger domains with the current
code is impractical because:

 * It takes too long

 * Too much memory per processor is required

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 12

The Proposed Solution (Overview)

J. Hein

Use more processors and hence divide the calculation into
smaller chunks in order to:

 * Speed up the calculation
 * Reduce the amount of memory required per processor

But this will require more data between processors
 * The communication overhead will be increased

Use a 2D decomposition

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 13

The Proposed Solution (Previous Work - 1)

Cubic case has already been investigated by Hagode
 * Used IBM BlueGene/L
 * Fourier Transform in all directions
 * Not a problem solving code
 * Similar mappings for all dimensions
 * Mapping depends on 2 things
 - No. of processors
 - Linear dimension (a common power of 2)

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 14

The Proposed Solution (Previous Work - 2)

1 dimensional processor grid

Each processor gets several planes

Perform FFT in two of the three directions

Single All-to-all before performing Jacobi in third direction

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 15

Proposed Solution (Previous Work – 3)

• Each processor gets a “stick” of the 3D array

• Perform FFT in 1st direction

• Perform several All-to-all transformation in the columns of

the processor grid

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 16

Proposed Solution (Previous Work – 4)

• Perform FFT in the 2nd direction

• Perform All-to-all in the rows of the processor grid

• Perform 3rd FFT in the last direction

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 17

The Proposed Soln. (Mapping of a Cuboid)

EBL is a problem solving code

In the EBL case the domain is not cubic
 * Distribution over processors will depend on the
 dimension being transformed
 * 3 distinct mappings of the 3D domain to the set of
 processors
 * Each mapping depends on 3 things
 - No. of processors
 - 2 linear dimensions (not powers of 2)

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 18

Refactoring the Code (Requirement)

The principal requirement is:

When transforming one dimension the loops over
the two remaining dimensions should be at the
top level.

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 19

Refactoring the Code (First Attempt)

Started from the current (EBL3) code (R. Johnstone
and G. Coleman)

 * Some loops were buried in subroutines

 * The 1D decomposition obscured matters

 * Difficult to reverse engineer

 * BUT up to date

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 20

Refactoring the Code (Second Attempt)

Swapped to an earlier, serial version

 * Some loops were buried in subroutines

 * It needed cleaning up

 * It needed updating

 * BUT structure was clearer

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 21

Status (Done)

Have cleaned up and updated serial code

Have flattened code and reordered where necessary

Have written and tested code to shuffle data around on a
cuboid

Have written stand alone code that:
 * given the dimensions of the domain and the number
 of processors
 * suggests processor array dimensions for each
 transformation

http://www.epcc.ed.ac.uk/

September 28, 2009 Scaling Turbulence Applications 22

Status (To Be Done)

Partition the loops to enable mapping to processors
 (started)

Implement data movement (based on experimental code)

Aggregation of data on nodes

Investigation of SWT and SS3F

http://www.epcc.ed.ac.uk/

	Scaling Turbulence Applications
	Outline
	Background (Collaborators)
	Background (History)
	Background (Current Domain Sizes)
	Background (Transforms)
	Current Code (Vertical Transform)
	Current Code (Horizontal Transforms)
	Current Code (Decomposition)
	Current Code (Processors)
	The Problem
	The Proposed Solution (Overview)
	The Proposed Solution (Previous Work - 1)
	The Proposed Solution (Previous Work - 2)
	Proposed Solution (Previous Work – 3)
	Proposed Solution (Previous Work – 4)
	The Proposed Soln. (Mapping of a Cuboid)
	Refactoring the Code (Requirement)
	Refactoring the Code (First Attempt)
	Refactoring the Code (Second Attempt)
	Status (Done)
	Status (To Be Done)

