CP2K:

23-24/09/2009

lain Bethune
ERGC
ibethune@epcc.ed.ac.uk

mailto:ibethune@epcc.ed.ac.uk

CP2K: Contents

* Project Overview

* Introduction to CP2K

* Realspace to planewave transfer
* Fast Fourier Transforms

* Load Balancing

* Summary

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Project Overview

* AHECTOoOR dCSE Project

— “Improving the performance of CP2K”

* 6 months effort at 50% FTE (Aug 08 — Jul 09)

* Collaboration with:
— Slater, Watkins @ UCL (HECToR Users)
— VandeVondele et al @ PCI, University of Zurich (CP2K Developers)

e Stated aims:
— 10-15% speedup on 64-256 cores
— 40-50% speedup on 512-1024+ cores

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Introduction to CP2K = Ny 9

* CP2Kis a freely available (GPL) Density Functional Theory
code (+ support for classical, empirical potentials) — can
perform MD, MC, geometry optimisation, normal mode
calculations...

* Developed since 2000, many developers migrated from the
CPMD project — mainly based in Univ Zurich / ETHZ / IBM
Zurich

* Employs a dual-basis (GPW) method to calculate energies,

forces, K-S Matrix in linear time
— N.B. linear scaling in number of atoms, not processors!

NSRS 4 CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Introduction to CP2K N _..

* The Gaussian basis results in sparse matrices which can be
cheaply manipulated e.g. diagonalisation during SCF
calculation.

* The planewave basis (relying on FFTs) allows easy
calculation of long-range electrostatics.

e Key step in the algorithm is transforming from one
representation to the other (and back again) — this is done
once each way per SCF cycle.

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Introduction to CP2

B T

* (A,G) —distributed
matrices

e (B,F)-realspace
multigrids

* (C,E) —realspace data

on planewave
multigrids

e (D) - planewave grids

* (ILVI) —integration/
collocation of gaussian
products

* (ILV) — realspace-to-
planewave transfer

e (ILIV)—-FFTs
(planewave transfer)

=
(VD)
A.G)
=)
ML)
D)

CP2K: A HECToR dCSE Project

(CE)

http://www.epcc.ed.ac.uk/

CP2K: Realspace to planevv‘a\‘}élm

* (Gaussians are mapped by the

‘owner’ of the corresponding real
space grid — but they may extend
over the boundaries of this region,

S0 a halo region is necessary

* Halos are swapped to ensure each process has all the
contributions from all gaussians which overlap its local grid.

* Data is then redistributed onto planewave grids by
MPI1_Alltoallv

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Realspace to planewave tm

* In a conventional halo swap (e.g. distributed 5-point
stencil algorithms) the edges of the core region of a
process are copied into the halos of the neighbouring
processes, which need it for the next step of calculation

* |In CP2K, the halo region (containing gaussian data
mapped locally) of a process is sent and summed into the
core region of a neighbouring process

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Realspace to planewave tm

e Optimisation:
— Swapping the full width of the halo in all three directions is

unnecessary — only the data that will end up in a core region
matters

— In fact, the halo regions are much larger than shown (e.g. for a
12573 grid on 512 processors, the core region is 16x16x16, but
the halo width is 18)

— CrayPAT timing with regions showed that the buffer packing for
the ‘X’ swap was most expensive, followed by ‘Y’, then by ‘Z’ even
iIf the halos were the same size — this is due to the data lying
contiguously in memory for the ‘Z’ swap

— Performing the swap in the Z,Y,X direction, and reducing the size
of halo sent each time gave a 100% speedup for this routine

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

L S

CP2K: Realspace to planewave

Y .
ave transfer s W = %Ok

Before | After
Avg. Message Size (bytes) | 194688 | 91008
Time in SendBReev (&) 0.46% | 0.22
Time packing X bufs (s) 0.107 | 0.002
Time unpacking X bufs (&) | 0.189 | 0.003
Time packing Y buts (s) 0.060 | 0.005
Time unpacking Y bufs (s) | 0.096 | 0.017
Time packing 4 buts (=) 0.054 | 0.054
Time unpacking £ bufs (s) | 0.091 0.091

G0 iterations of the rs2pw libtest,

before and after optimisation

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Realspace to planewﬁﬁé‘m

* The result — a 14% speedup on 256 cores:

Cores 16 |32 |64 | 128 | 256 | 512
Before(s) 052 | 541 | 318 | 268 | 217 | 264
After(s) 038 | 519 | 296 | 247 | 190 | 235
Speedup(%) | 2 4 7 9 14 |12

Comparison of bench_64 runtime before and after rs2pw optimisation

* bench 64 is a small test case of 64 water molecules,
40,000 basis functions, 50 MD steps

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Introduction to CP2

B T

* (A,G) —distributed
matrices

e (B,F)-realspace
multigrids

* (C,E) —realspace data

on planewave
multigrids

e (D) - planewave grids

* (ILVI) —integration/
collocation of gaussian
products

* (ILV) — realspace-to-
planewave transfer

e (ILIV)—-FFTs
(planewave transfer)

=
(VD)
A.G)
=)
ML)
D)

CP2K: A HECToR dCSE Project

(CE)

http://www.epcc.ed.ac.uk/

L3
! el
% &

CP2K: Fast Fourier Transforms

* CP2K uses a 3D Fourier Transform to turn real
data on the plane wave grids into g-space data
on the plane wave grids.

* The grids may be distributed as planes, or rays
(pencils) — so the FFT may involve one or two
transpose steps between the 3 1D FFT
operations

* The 1D FFTs are performed via an interface
which supports many libraries e.g. FFTW 2/3
ESSL, ACML, CUDA, FFTSG (in-built)

NSRS 4 CP2K: A HECToR dCSE Project -

http://www.epcc.ed.ac.uk/

il

A

CP2K: Fast Fourier Transforms L |G

* CP2K already has a data structure fft_scratch which stores
buffers, coordinates etc. for reuse

* The MPI sub-communicators, and a number of other pieces of data

were added
* Number of MPI_Cart_sub calls reduced from 11722 to 5 (for 50 MD
steps)
Cores 64 | 1258 | 256 | 512
Before(s) 366 | 264 | 191 | 238
After(s) 63 | 250 | 177 | 213
Speedup(%) | 1 G = 12

Comparison of bench_64 runtime before and after FF'T caching optimisation

* N.B. This speedup would increase for longer runs

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Fast Fourier Trans'fdvr'r“ﬁs"“m

* Initially the FFTW interface did not use FFTW plans

effectively
— At each step a plan would be created, used, and
destroyed.

* But at least the interface was simple, and consistent with
the other FFT libraries

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Fast Fourier Transforms =~ *

* |Introduced a new type to the fft_scratch for
storing library-dependent data

* Implemented storage and re-use of plans for
FFTW 2 and 3 — for other libraries planning is a
no-op

* This allowed the more expensive plan types to
used...

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Fast Fourier Transf ?n m

\=] T
Time(s) | Speedup()

Original Code 097

FFTW_ESTIMATE 095 0.2
FFTW_MEASURE 0=9 0.5
FFTW_PATIENT 975 2.3

FFTW_EXHAUSTIVE | 1081

Time and speedup for 2000 3D FFT's using different plan tvpes

* Choice of plan type is left up to the user and
exposed as an option in the input file, defaulting
to FFTW_ESTIMATE

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Introduction to CP2

B T

* (A,G) —distributed
matrices

e (B,F)-realspace
multigrids

* (C,E) —realspace data

on planewave
multigrids

e (D) - planewave grids

* (ILVI) —integration/
collocation of gaussian
products

* (ILV) — realspace-to-
planewave transfer

e (ILIV)—-FFTs
(planewave transfer)

=
(VD)
A.G)
=)
ML)
D)

CP2K: A HECToR dCSE Project

(CE)

http://www.epcc.ed.ac.uk/

CP2K: Load balancing o N o

* The sparse matrix representing the electronic density has
structure dependent on the physical problem

* For condensed-phase systems atoms are (relatively)
uniformly distributed over the simulation cell

* Therefore the work of mapping Gaussians to the real
space grid is fairly well load balanced

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

-

CP2K: Load balancing

* The existing load balancing scheme uses ‘tasks’
belonging to the replicated grid levels to load balance —
these can be mapped by any process:

At the end of the load_balance_distributed

Maximum load: 75667
Average load: 68312
Minimum load: 13080

At the end of the load_balance_replicated

Maximum load: 123552
Average load: 123457
Minimum load: 123374

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Load balancing

* We used the ‘W216’ test case — a cluster of 216
water molecules in a large (34A"3) unit cell

* Severe load imbalance is encountered (6:1):
At the end of the load_balance_distributed

Maximum load: 1738978
Average load: 176232
Minimum load: §

At the end of the load_balance_replicated

Maximum load: 1738978
Average load: 475032
Minimum load: 286053

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Load balancing i , ¢

* To address this, a new scheme was used where
each MPI process could hold a different spatial
section of the real space grid at each
(distributed) grid level

* Once the loads on each MPI process were
determined (per grid level), underloaded regions
would be matched up with overloaded regions
from another grid level

* Replicated tasks would be used as before to
finely balance the load

NSRS 4 CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Load balancing

* For the example shown above the load on the
most heavily loaded process is reduced by 30%,
and there is now a load imbalance of 3:1

After load_balance_distributed

Maximum load: 1165637
Average load: 176232
Minimum load: o

After load_balance_replicated

Maximum load: 1165637
Average load: 475032
Minimum load: 317590

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Load balancing a“‘m

* However, If it Is possible to balance the load, this method

will succeed:

el

L exillre

T2

pliexi s

B Repicated
= O Lavsd 1
E BT
H Lavsd 0
O Rark
T -
AT -
LR ILLEn
[

1 z a 4 =] T = o i 11 12 13 14 15 18

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Load balancing RS S IS

 But If there Is a single region with load from one
grid level larger than the average load then we
still have some imbalance:

S
SO
QO
B Fepdcabed
= O Lavsd 1
EE-IIIIIIII
B Lssd 0
O Rank
2O
FORCC
o
T 4 7 10 93 18 19 ZX 25 Z O3 MW 40 431 485 40 22 BB 2B £ =4

Rank

CP2K: A HECToR dCSE Project »

http://www.epcc.ed.ac.uk/

CP2K: Load balancing

* The result: 25% speedup on 128 cores, 10% on 1024

cores
Cores 12% 206 | 512 1024 | 2048
Before(s) H00= | 3409 | 2445 [1569 | 2565
After(s) ASO0 | 2859 | 2006 | 1425 | 2166
Speedup (%) | 25 23 16 10 18

Comparison of W216 runtime before and after rank reordering for load balance

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Summary B D L

* QOverall speedup for bench_64 — 30 % on 256 cores
(target was 10-15%)

CFZK Parformanios, bench_ 64

E

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Summary

* QOverall speedup for W216 — 300 % on 1024 cores
(target was 40-50%)

CPZK perlormarcs, W e

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Summary B D L

* Project achieved the stated aims and more...
* Improvements are in CVS and in use on HPCx and
HECToR

¢ NAG have funded an additional 6 months of dCSE
support to implement hybrid OpenMP/MPI and address
other bottlenecks

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K

* Questions?

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

e, -~

CP2K: Realspace to plan ve

o Stepl:
Gaussians are

mapped

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

g . _" i AN L

CP2K: Realspace to plangw ve t

 Step 1:
(' Gaussians are
mapped

e Step 2: Swap

N

ab

halos In X

direction

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

g . _" i AN L

CP2K: Realspace to plangw ve t

 Step 1:
Gaussians are
mapped

e Step 2: Swap

halos In X

direction

N4 - * Step 3: Swap
halos inY

direction

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Realspace to pla'néavbgggm

e Stepl:
Gaussians are
mapped

e Step 2: Swap
halos in X
direction

e Step 3: Swap
halos in'Y
direction

o Step 4.
Redistribute

TR

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Fast Fourier Transforms

-
=

- |

0\ N+ ®

* Initial profiling of the 3D FFT using CrayPAT showed
many expensive calls to MP|_Cart_sub to decompose the
cartesian topology — called every iteration, generating the
same set of sub-communicators each time!

Time % |

100.0% | 19.588726 |

| ez2.8% | 12.298018 |

1--—-
|1 37.1Y%
1 24.4Y

0

o O O O O

Time |Imb. Time |

Imb. |

| Time % |

A
-2
1%
1%
YA
0%

T7.270124

4,
0.
.034614
. 025250
. 014001
008200
.007483

o O O O O

722975
144511

. 741629
.257500
. 008960
.003197
.002017
.001163
.001827
.001781

oo OO0 o O O

Calls |Group
| Function

FE.Thread="HIDE’

-— | 126389.0 |Total

-- | 120382.0 |MPI

9.3%
20.9%
4.6%
8.5%
7.4
7.7%
18.3%
19.3%

4000
4000 .
2002,
24085 .
70001,
4002,
6002,
6005.

¥

oo oo o O O

CP2K: A HECToR dCSE Project

|mpi_cart_sub_
|mpi_allteallv_
|mpi_barrier_
|mpi_wtime _
|mpi_cart_rank_
|mpi_comm_free_
|mpi_cart_get_
|mpi_comm_size_

‘ ;

http://www.epcc.ed.ac.uk/

CP2K: Fast Fourier Transforms ~ W&®

* MPI_Alltoallv is used for the transpose steps

* However, data is distributed evenly such that with a little
padding we could use MPI_Alltoall

* This should give a 20-30% speedup as measure by Intel/
Pallas MPI| benchmark

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Fast Fourier Trans'fdvr'r“ﬁs"“m

Alltoall performance

1.4

1.2
E i
= 08 —+—4ME
_E 06 e
E 0.4 —a—64KEB
I 02

0 . T

1 10 1000 100K
Coras

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

CP2K: Fast Fourier Transf ?n m

* In practise, only a 2% improvement was gained due to

poor synchronisation

* But the code was not added to CVS due to the extra
complexity of book-keeping code and buffer padding

CP2K: A HECToR dCSE Project

http://www.epcc.ed.ac.uk/

	CP2K: A HECToR dCSE Project
	CP2K: Contents
	CP2K: Project Overview
	CP2K: Introduction to CP2K
	Slide 5
	Slide 6
	CP2K: Realspace to planewave transfer
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	CP2K: Fast Fourier Transforms
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	CP2K: Load balancing
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	CP2K: Summary
	Slide 28
	Slide 29
	CP2K
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

