
Iain Bethune
EPCC

ibethune@epcc.ed.ac.uk

CP2K:
A HECToR dCSE

Project
HECToR dCSE Support Technical Meeting

23-24/09/2009

mailto:ibethune@epcc.ed.ac.uk

CP2K: A HECToR dCSE Project 2

CP2K: Contents

• Project Overview

• Introduction to CP2K

• Realspace to planewave transfer

• Fast Fourier Transforms

• Load Balancing

• Summary

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 3

CP2K: Project Overview

• A HECToR dCSE Project
– “Improving the performance of CP2K”

• 6 months effort at 50% FTE (Aug 08 – Jul 09)

• Collaboration with:
– Slater, Watkins @ UCL (HECToR Users)
– VandeVondele et al @ PCI, University of Zurich (CP2K Developers)

• Stated aims:
– 10-15% speedup on 64-256 cores

– 40-50% speedup on 512-1024+ cores

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 4

CP2K: Introduction to CP2K

• CP2K is a freely available (GPL) Density Functional Theory

code (+ support for classical, empirical potentials) – can

perform MD, MC, geometry optimisation, normal mode

calculations…

• Developed since 2000, many developers migrated from the

CPMD project – mainly based in Univ Zurich / ETHZ / IBM

Zurich

• Employs a dual-basis (GPW) method to calculate energies,

forces, K-S Matrix in linear time
– N.B. linear scaling in number of atoms, not processors!

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 5

CP2K: Introduction to CP2K

• The Gaussian basis results in sparse matrices which can be

cheaply manipulated e.g. diagonalisation during SCF

calculation.

• The planewave basis (relying on FFTs) allows easy

calculation of long-range electrostatics.

• Key step in the algorithm is transforming from one

representation to the other (and back again) – this is done

once each way per SCF cycle.

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 6

CP2K: Introduction to CP2K

• (A,G) – distributed
matrices

• (B,F) – realspace
multigrids

• (C,E) – realspace data
on planewave
multigrids

• (D) – planewave grids

• (I,VI) – integration/
collocation of gaussian
products

• (II,V) – realspace-to-
planewave transfer

• (III,IV) – FFTs
(planewave transfer)

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 7

CP2K: Realspace to planewave transfer

• Gaussians are mapped by the

‘owner’ of the corresponding real

space grid – but they may extend

over the boundaries of this region,

so a halo region is necessary

• Halos are swapped to ensure each process has all the

contributions from all gaussians which overlap its local grid.

• Data is then redistributed onto planewave grids by

MPI_Alltoallv

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 8

CP2K: Realspace to planewave transfer

• In a conventional halo swap (e.g. distributed 5-point

stencil algorithms) the edges of the core region of a

process are copied into the halos of the neighbouring

processes, which need it for the next step of calculation

• In CP2K, the halo region (containing gaussian data

mapped locally) of a process is sent and summed into the

core region of a neighbouring process

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 9

CP2K: Realspace to planewave transfer

• Optimisation:
– Swapping the full width of the halo in all three directions is

unnecessary – only the data that will end up in a core region
matters

– In fact, the halo regions are much larger than shown (e.g. for a
125^3 grid on 512 processors, the core region is 16x16x16, but
the halo width is 18)

– CrayPAT timing with regions showed that the buffer packing for
the ‘X’ swap was most expensive, followed by ‘Y’, then by ‘Z’ even
if the halos were the same size – this is due to the data lying
contiguously in memory for the ‘Z’ swap

– Performing the swap in the Z,Y,X direction, and reducing the size
of halo sent each time gave a 100% speedup for this routine

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 10

CP2K: Realspace to planewave transfer

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 11

CP2K: Realspace to planewave transfer

• The result – a 14% speedup on 256 cores:

• bench_64 is a small test case of 64 water molecules,

40,000 basis functions, 50 MD steps

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 12

CP2K: Introduction to CP2K

• (A,G) – distributed
matrices

• (B,F) – realspace
multigrids

• (C,E) – realspace data
on planewave
multigrids

• (D) – planewave grids

• (I,VI) – integration/
collocation of gaussian
products

• (II,V) – realspace-to-
planewave transfer

• (III,IV) – FFTs
(planewave transfer)

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 13

CP2K: Fast Fourier Transforms

• CP2K uses a 3D Fourier Transform to turn real

data on the plane wave grids into g-space data

on the plane wave grids.

• The grids may be distributed as planes, or rays

(pencils) – so the FFT may involve one or two

transpose steps between the 3 1D FFT

operations

• The 1D FFTs are performed via an interface

which supports many libraries e.g. FFTW 2/3

ESSL, ACML, CUDA, FFTSG (in-built)

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 14

CP2K: Fast Fourier Transforms

• CP2K already has a data structure fft_scratch which stores
buffers, coordinates etc. for reuse

• The MPI sub-communicators, and a number of other pieces of data
were added

• Number of MPI_Cart_sub calls reduced from 11722 to 5 (for 50 MD
steps)

• N.B. This speedup would increase for longer runs

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 15

CP2K: Fast Fourier Transforms

• Initially the FFTW interface did not use FFTW plans

effectively

– At each step a plan would be created, used, and
destroyed.

• But at least the interface was simple, and consistent with

the other FFT libraries

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 16

CP2K: Fast Fourier Transforms

• Introduced a new type to the fft_scratch for

storing library-dependent data

• Implemented storage and re-use of plans for

FFTW 2 and 3 – for other libraries planning is a

no-op

• This allowed the more expensive plan types to

used…

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 17

CP2K: Fast Fourier Transforms

• Choice of plan type is left up to the user and

exposed as an option in the input file, defaulting

to FFTW_ESTIMATE

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 18

CP2K: Introduction to CP2K

• (A,G) – distributed
matrices

• (B,F) – realspace
multigrids

• (C,E) – realspace data
on planewave
multigrids

• (D) – planewave grids

• (I,VI) – integration/
collocation of gaussian
products

• (II,V) – realspace-to-
planewave transfer

• (III,IV) – FFTs
(planewave transfer)

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 19

CP2K: Load balancing

• The sparse matrix representing the electronic density has

structure dependent on the physical problem

• For condensed-phase systems atoms are (relatively)

uniformly distributed over the simulation cell

• Therefore the work of mapping Gaussians to the real

space grid is fairly well load balanced

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 20

CP2K: Load balancing

• The existing load balancing scheme uses ‘tasks’

belonging to the replicated grid levels to load balance –

these can be mapped by any process:

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 21

CP2K: Load balancing

• We used the ‘W216’ test case – a cluster of 216

water molecules in a large (34A^3) unit cell

• Severe load imbalance is encountered (6:1):

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 22

CP2K: Load balancing

• To address this, a new scheme was used where
each MPI process could hold a different spatial
section of the real space grid at each
(distributed) grid level

• Once the loads on each MPI process were
determined (per grid level), underloaded regions
would be matched up with overloaded regions
from another grid level

• Replicated tasks would be used as before to
finely balance the load

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 23

CP2K: Load balancing

• For the example shown above the load on the

most heavily loaded process is reduced by 30%,

and there is now a load imbalance of 3:1

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 24

CP2K: Load balancing

• However, if it is possible to balance the load, this method

will succeed:

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 25

CP2K: Load balancing

• But if there is a single region with load from one

grid level larger than the average load then we

still have some imbalance:

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 26

CP2K: Load balancing

• The result: 25% speedup on 128 cores, 10% on 1024

cores

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 27

CP2K: Summary

• Overall speedup for bench_64 – 30 % on 256 cores

(target was 10-15%)

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 28

CP2K: Summary

• Overall speedup for W216 – 300 % on 1024 cores

(target was 40-50%)

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 29

CP2K: Summary

• Project achieved the stated aims and more…

• Improvements are in CVS and in use on HPCx and

HECToR

• NAG have funded an additional 6 months of dCSE

support to implement hybrid OpenMP/MPI and address

other bottlenecks

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 30

CP2K

• Questions?

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 31

CP2K: Realspace to planewave transfer

• Step 1 :

Gaussians are

mapped

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 32

CP2K: Realspace to planewave transfer

• Step 1 :

Gaussians are

mapped

• Step 2: Swap

halos in X

direction

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 33

CP2K: Realspace to planewave transfer

• Step 1 :

Gaussians are

mapped

• Step 2: Swap

halos in X

direction

• Step 3: Swap

halos in Y

direction

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 34

CP2K: Realspace to planewave transfer

• Step 1 :

Gaussians are

mapped

• Step 2: Swap

halos in X

direction

• Step 3: Swap

halos in Y

direction

• Step 4:

Redistribute

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 35

CP2K: Fast Fourier Transforms

• Initial profiling of the 3D FFT using CrayPAT showed
many expensive calls to MPI_Cart_sub to decompose the
cartesian topology – called every iteration, generating the
same set of sub-communicators each time!

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 36

CP2K: Fast Fourier Transforms

• MPI_Alltoallv is used for the transpose steps

• However, data is distributed evenly such that with a little

padding we could use MPI_Alltoall

• This should give a 20-30% speedup as measure by Intel/

Pallas MPI benchmark

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 37

CP2K: Fast Fourier Transforms

http://www.epcc.ed.ac.uk/

CP2K: A HECToR dCSE Project 38

CP2K: Fast Fourier Transforms

• In practise, only a 2% improvement was gained due to

poor synchronisation

• But the code was not added to CVS due to the extra

complexity of book-keeping code and buffer padding

http://www.epcc.ed.ac.uk/

	CP2K: A HECToR dCSE Project
	CP2K: Contents
	CP2K: Project Overview
	CP2K: Introduction to CP2K
	Slide 5
	Slide 6
	CP2K: Realspace to planewave transfer
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	CP2K: Fast Fourier Transforms
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	CP2K: Load balancing
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	CP2K: Summary
	Slide 28
	Slide 29
	CP2K
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

