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CP2K: Project Overview

• A HECToR dCSE Project
– “Improving the performance of CP2K”

• 6 months effort at 50% FTE (Aug 08 – Jul 09)

• Collaboration with:
– Slater, Watkins @ UCL (HECToR Users)
– VandeVondele et al @ PCI, University of Zurich (CP2K Developers)

• Stated aims:
– 10-15% speedup on 64-256 cores

– 40-50% speedup on 512-1024+ cores

http://www.epcc.ed.ac.uk/
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CP2K: Introduction to CP2K

• CP2K is a freely available (GPL) Density Functional Theory 

code (+ support for classical, empirical potentials) – can 

perform MD, MC, geometry optimisation, normal mode 

calculations…

• Developed since 2000, many developers migrated from the 

CPMD project – mainly based in Univ Zurich / ETHZ / IBM 

Zurich

• Employs a dual-basis (GPW) method to calculate energies, 

forces, K-S Matrix in linear time
– N.B. linear scaling in number of atoms, not processors!

http://www.epcc.ed.ac.uk/
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CP2K: Introduction to CP2K

• The Gaussian basis results in sparse matrices which can be 

cheaply manipulated e.g. diagonalisation during SCF 

calculation.

• The planewave basis (relying on FFTs) allows easy 

calculation of long-range electrostatics.

• Key step in the algorithm is transforming from one 

representation to the other (and back again) – this is done 

once each way per SCF cycle.

http://www.epcc.ed.ac.uk/
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CP2K: Introduction to CP2K

• (A,G) – distributed 
matrices

• (B,F) – realspace 
multigrids

• (C,E) – realspace data 
on planewave 
multigrids

• (D) – planewave grids

• (I,VI) – integration/ 
collocation of gaussian 
products

• (II,V) – realspace-to-
planewave transfer

• (III,IV) – FFTs 
(planewave transfer)

http://www.epcc.ed.ac.uk/
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CP2K: Realspace to planewave transfer

• Gaussians are mapped by the 

‘owner’ of the corresponding real 

space grid – but they may extend 

over the boundaries of this region, 

so a halo region is necessary

• Halos are swapped to ensure each process has all the 

contributions from all gaussians which overlap its local grid.

• Data is then redistributed onto planewave grids by 

MPI_Alltoallv

http://www.epcc.ed.ac.uk/
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CP2K: Realspace to planewave transfer

• In a conventional halo swap (e.g. distributed 5-point 

stencil algorithms) the edges of the core region of a 

process are copied into the halos of the neighbouring 

processes, which need it for the next step of calculation

• In CP2K, the halo region (containing gaussian data 

mapped locally) of a process is sent and summed into the 

core region of a neighbouring process

http://www.epcc.ed.ac.uk/
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CP2K: Realspace to planewave transfer

• Optimisation:
– Swapping the full width of the halo in all three directions is 

unnecessary – only the data that will end up in a core region 
matters

– In fact, the halo regions are much larger than shown (e.g. for a 
125^3 grid on 512 processors, the core region is 16x16x16, but 
the halo width is 18)

– CrayPAT timing with regions showed that the buffer packing for 
the ‘X’ swap was most expensive, followed by ‘Y’, then by ‘Z’ even 
if the halos were the same size – this is due to the data lying 
contiguously in memory for the ‘Z’ swap

– Performing the swap in the Z,Y,X direction, and reducing the size 
of halo sent each time gave a 100% speedup for this routine

http://www.epcc.ed.ac.uk/
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CP2K: Realspace to planewave transfer

http://www.epcc.ed.ac.uk/
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CP2K: Realspace to planewave transfer

• The result – a 14% speedup on 256 cores:

• bench_64 is a small test case of 64 water molecules, 

40,000 basis functions, 50 MD steps

http://www.epcc.ed.ac.uk/
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CP2K: Introduction to CP2K

• (A,G) – distributed 
matrices

• (B,F) – realspace 
multigrids

• (C,E) – realspace data 
on planewave 
multigrids

• (D) – planewave grids

• (I,VI) – integration/ 
collocation of gaussian 
products

• (II,V) – realspace-to-
planewave transfer

• (III,IV) – FFTs 
(planewave transfer)

http://www.epcc.ed.ac.uk/
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CP2K: Fast Fourier Transforms

• CP2K uses a 3D Fourier Transform to turn real 

data on the plane wave grids into g-space data 

on the plane wave grids.

• The grids may be distributed as planes, or rays 

(pencils) – so the FFT may involve one or two 

transpose steps between the 3 1D FFT 

operations

• The 1D FFTs are performed via an interface 

which supports many libraries e.g. FFTW 2/3 

ESSL, ACML, CUDA, FFTSG (in-built)

http://www.epcc.ed.ac.uk/
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CP2K: Fast Fourier Transforms

• CP2K already has a data structure fft_scratch which stores 
buffers, coordinates etc. for reuse

• The MPI sub-communicators, and a number of other pieces of data 
were added

• Number of MPI_Cart_sub calls reduced from 11722 to 5 (for 50 MD 
steps)

• N.B.  This speedup would increase for longer runs

http://www.epcc.ed.ac.uk/
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CP2K: Fast Fourier Transforms

• Initially the FFTW interface did not use FFTW plans 

effectively

– At each step a plan would be created, used, and 
destroyed.

• But at least the interface was simple, and consistent with 

the other FFT libraries

http://www.epcc.ed.ac.uk/
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CP2K: Fast Fourier Transforms

• Introduced a new type to the fft_scratch for 

storing library-dependent data

• Implemented storage and re-use of plans for 

FFTW 2 and 3 – for other libraries planning is a 

no-op

• This allowed the more expensive plan types to 

used…

http://www.epcc.ed.ac.uk/
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CP2K: Fast Fourier Transforms

• Choice of plan type is left up to the user and 

exposed as an option in the input file, defaulting 

to FFTW_ESTIMATE

http://www.epcc.ed.ac.uk/
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CP2K: Introduction to CP2K

• (A,G) – distributed 
matrices

• (B,F) – realspace 
multigrids

• (C,E) – realspace data 
on planewave 
multigrids

• (D) – planewave grids

• (I,VI) – integration/ 
collocation of gaussian 
products

• (II,V) – realspace-to-
planewave transfer

• (III,IV) – FFTs 
(planewave transfer)

http://www.epcc.ed.ac.uk/
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CP2K: Load balancing

• The sparse matrix representing the electronic density has 

structure dependent on the physical problem

• For condensed-phase systems atoms are (relatively) 

uniformly distributed over the simulation cell

• Therefore the work of mapping Gaussians to the real 

space grid is fairly well load balanced

http://www.epcc.ed.ac.uk/
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CP2K: Load balancing

• The existing load balancing scheme uses ‘tasks’ 

belonging to the replicated grid levels to load balance – 

these can be mapped by any process:

http://www.epcc.ed.ac.uk/
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CP2K: Load balancing

• We used the ‘W216’ test case – a cluster of 216 

water molecules in a large (34A^3) unit cell

• Severe load imbalance is encountered (6:1):

http://www.epcc.ed.ac.uk/
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CP2K: Load balancing

• To address this, a new scheme was used where 
each MPI process could hold a different spatial 
section of the real space grid at each 
(distributed) grid level

• Once the loads on each MPI process were 
determined (per grid level), underloaded regions 
would be matched up with overloaded regions 
from another grid level

• Replicated tasks would be used as before to 
finely balance the load

http://www.epcc.ed.ac.uk/
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CP2K: Load balancing

• For the example shown above the load on the 

most heavily loaded process is reduced by 30%, 

and there is now a load imbalance of 3:1

http://www.epcc.ed.ac.uk/
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CP2K: Load balancing

• However, if it is possible to balance the load, this method 

will succeed:

http://www.epcc.ed.ac.uk/
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CP2K: Load balancing

• But if there is a single region with load from one 

grid level larger than the average load then we 

still have some imbalance:

http://www.epcc.ed.ac.uk/
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CP2K: Load balancing

• The result: 25% speedup on 128 cores, 10% on 1024 

cores

http://www.epcc.ed.ac.uk/
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CP2K: Summary

• Overall speedup for bench_64 – 30 % on 256 cores 

(target was 10-15%)

http://www.epcc.ed.ac.uk/
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CP2K: Summary

• Overall speedup for W216 – 300 % on 1024 cores 

(target was 40-50%)

http://www.epcc.ed.ac.uk/
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CP2K: Summary

• Project achieved the stated aims and more…

• Improvements are in CVS and in use on HPCx and 

HECToR

• NAG have funded an additional 6 months of dCSE 

support to implement hybrid OpenMP/MPI and address 

other bottlenecks

http://www.epcc.ed.ac.uk/
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CP2K

• Questions?

http://www.epcc.ed.ac.uk/
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CP2K: Realspace to planewave transfer

• Step 1 : 

Gaussians are 

mapped

http://www.epcc.ed.ac.uk/
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CP2K: Realspace to planewave transfer

• Step 1 : 

Gaussians are 

mapped

• Step 2: Swap 

halos in X 

direction

http://www.epcc.ed.ac.uk/
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CP2K: Realspace to planewave transfer

• Step 1 : 

Gaussians are 

mapped

• Step 2: Swap 

halos in X 

direction

• Step 3: Swap 

halos in Y 

direction

http://www.epcc.ed.ac.uk/
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CP2K: Realspace to planewave transfer

• Step 1 : 

Gaussians are 

mapped

• Step 2: Swap 

halos in X 

direction

• Step 3: Swap 

halos in Y 

direction

• Step 4: 

Redistribute

http://www.epcc.ed.ac.uk/
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CP2K: Fast Fourier Transforms

• Initial profiling of the 3D FFT using CrayPAT showed 
many expensive calls to MPI_Cart_sub to decompose the 
cartesian topology – called every iteration, generating the 
same set of sub-communicators each time!

http://www.epcc.ed.ac.uk/
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CP2K: Fast Fourier Transforms

• MPI_Alltoallv is used for the transpose steps

• However, data is distributed evenly such that with a little 

padding we could use MPI_Alltoall

• This should give a 20-30% speedup as measure by Intel/

Pallas MPI benchmark

http://www.epcc.ed.ac.uk/
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CP2K: Fast Fourier Transforms

http://www.epcc.ed.ac.uk/
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CP2K: Fast Fourier Transforms

• In practise, only a 2% improvement was gained due to 

poor synchronisation

• But the code was not added to CVS due to the extra 

complexity of book-keeping code and buffer padding

http://www.epcc.ed.ac.uk/
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