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CABARET dCSE

�

 
• Started March 2009 working 50%

• Collaboration with the Whittle Laboratory, University 
of Cambridge Department of Engineering 

• First dCSE project requiring full parallelisation of a 
code

• Ends Feb 2011

 

  



What is CABARET?

�

 
• Compact Accurately Boundary Adjusting high-
Resolution Technique (CABARET)

�

• Method is based on an extension of the original 
second-order Upwind Leapfrog three-time-level 
advection scheme (Roe, 1993) 

• Two-time-level non-oscillatory scheme for 
quasilinear hyperbolic conservation laws

 

  



Applications of CABARET

• Applicable to compressible unsteady Navier-Stokes 
Flow problems ranging from acoustic wave propagation 
and vortical flows to shock wave interaction

• In Re~10000 calculations the method gives a very 
good convergence without additional preconditioning, 
down to Mach numbers as low as M~0.05-0.1 



CABARET LES ocean modelling 
• Because of hydrodynamic instability, the boundary layer, which occurs at the 
left  (western) domain boundary, is separated and a free jet in the eastward 
direction is developed 
• Time-averaged stream function in the top layer of the 3-layer model, CABARET 
is ~ 30 times more efficient!

Grid 257x257

CABARET Conventional 2nd order central scheme

Grid 257x257 Grid 1025x1025



3-D backward facing step

Test case Low Mach number turbulent flow around a 3-D backward facing step 

‘Mature’ solution courtesy of Prof. Vasily Kondakov, 
NSI, Moscow

Re=5000
M =0.1
Grid: 10 points per step 
height size=1
Inflow BC: laminar

Streamlines of average velocity field

Shows a correct length of 
the recirculation zone



Why develop parallel CABARET?

• Original Fortran 90 code was developed around 1998

• Can handle up to a million grid points

• To resolve higher resolution grids required in high 
fidelity LES simulations where Re>100000 we require 
10 million grid points

• Locality of algorithm will lend itself well to distributed 
processing – develop parallel code



Data decomposition

• CABARET is similar to a finite difference / finite 
volume calculation
 
• Parallel version of the code already exists for a 
structured orthogonal grid 

• This project is concerned with developing a parallel 
version based on an irregular hexahedral grid

• Next step is implementing a tetrahedral cell 
structure
 



Parallel Data Decomposition

• For the data decomposition we use calls to the 
graph partitioner Metis

• Metis produces minimal edge cuts for each partition 
– thus minimising MPI communications
 

E.g. Four part decomposition for the backstep case 



Code description

• PHASE1 -  conservative predictor step

• VISCOSITY - computation of the cell centred viscous terms

• PHASE2 / MODULE- extrapolation step where the local cell-
based characteristic splitting is performed 
 
• BOUND - applying physical boundary conditions for the 
boundary cells 
 
• PHASE3 - conducting the conservative corrector step 
 



Main loops

• All calculations are local to a cell and it's six nearest 
neighbour cells
 
• All main loops involve NSIDE calculations apart from 
phase1

• Finite volume calculation in phase1 loops over the 
APEXes

APEX CELL FACE

CELL (Hexahedral)

�



MPI communications

• Irregular decomposition – local numbering on each 
cpu is non-contiguous
 
• Global to local mapping for SIDEs,APEXes, CELLs 
and boundary SIDEs

• Decomposition is optimised for the SIDEs



Partition connectivity

• Each cpu stores connectivity between neighbouring 
cpus and their SIDEs - NEIGH(I)

�

• Connectivity local to each cpu – 
 cpu 1 : connect(2:3)=1, cpu 2 : connect(1)=1, cpu 3 : connect(1)=1

CELL Acpu 1 cpu 2

cpu 3



SIDE connectivity

• K=SIDELINK(L,I) where K and L are local SIDE 
numbers and I is the neighbouring partition

• K and L both map to the same global SIDE number

CELL A
CELL B

SIDE C



Vectorisation

• All the main loops are SIDE based 
– DO L=1,NSIDE
   ......
   IF (GEMSIDECELL(L,1)/=0)...
   ......
   IF (GEMSIDECELL(L,3)==1234)...
   ......
   END DO

will not vectorise !



Pointers

• Main arrays for the grid data, flux-type and 
conservative terms are allocatable

– REAL(KIND=8), TARGET, ALLOCATABLE :: CELL(:)

�

– INTEGER, TARGET,ALLOCATABLE :: GEMCELLSIDE(:)

�

 
• Use Fortran90 data types

– TYPE TRANSFERS
– INTEGER, POINTER :: INTBLOCK(:)

�

– REAL(KIND=DP), POINTER :: REALBLOCK(:)

�

– END TYPE TRANSFERS
– TYPE (TRANSFERS) :: TRANSFER1
– ALLOCATE(TRANSFER1%INTBLOCK(4*NCELL))

�

– ALLOCATE(TRANSFER1%REALBLOCK(4*NCELL))

�



Transfers with pointers

• Set pointers
– TRANSFER1%INTBLOCK=>GEMCELLSIDE
– TRANSFER1%REALBLOCK=>CELL

 
• Can pass with separate calls

– CALL MPI_ISSEND(TRANSFER1%INTBLOCK,..
– CALL MPI_ISSEND(TRANSFER1%REALBLOCK,..

• Why not send the TRANSFER data type as an MPI_TYPE
– CALL MPI_TYPE_CREATE_STRUCT((2, BLOCKCOUNTS, OFFSETS, 

OLDTYPES,TRANSFERTYPE, IERR) 
– CALL MPI_TYPE_COMMIT(TRANSFERTYPE, IERR) 



Initial performance

• Test initial parallelisation with the following HECToR 
compilers and optimisation flags

– Cray FFLAGS = -O3 -Oaggress -Omsgs
– Pgf90 FFLAGS = -Minfo -Mneginfo -Mextend -fast -Munroll=n:4 -Mipa=fast,inline 

-O3 -tp barcelona-64
– Pathscale FFLAGS = -Ofast -LNO:full_unroll=4 -march=barcelona 

-OPT:malloc_algorithm=1 -LNO:simd_verbose=ON
– Gfortran FFLAGS = -march=barcelona -ffast-math -funroll-loops -O3 -ffixed-line-

length-72 -ftree-vectorizer-verbose=2

• See http://www.hector.ac.uk/cse/reports/compilers.php for 
compiler performance results on a variety of other codes

http://www.hector.ac.uk/cse/reports/compilers.php


What takes most time?

One iteration of 
CABARET algorithm



Performance

Backward facing step case (fixed problem size) with 
NAPEX=111741 NCELL =100000 NSIDE =311400
270 iterations

Initialisation



Performance

Backward facing step case (fixed problem size) with 
NAPEX=111741 NCELL =100000 NSIDE =311400
270 iterations



3-D backward facing step

Backward facing step case  with NAPEX=111741 
NCELL =100000 NSIDE =311400 mature solution

Paraview plot of 
x component of 
velocity



Conclusion

• CABARET method up to 30 times more efficient for
 some CFD applications - on coarser grids

• For Re~10000 and subsonic M - method gives good 
convergence without preconditioning

• Parallel code uses irregular domain decomposition

• Main loops will not vectorise – further work!
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