
A Research Councils UK High End Computing Service

Parallelisation of CABARET

Phil Ridley
Numerical Algorithms Group Ltd, HECToR CSE

Outline

•

�

 Project background

• What is CABARET?

• Applications of CABARET

• Why develop the CABARET code?

• Code description and performance

• Conclusion

CABARET dCSE

�

• Started March 2009 working 50%

• Collaboration with the Whittle Laboratory, University
of Cambridge Department of Engineering

• First dCSE project requiring full parallelisation of a
code

• Ends Feb 2011

What is CABARET?

�

• Compact Accurately Boundary Adjusting high-
Resolution Technique (CABARET)

�

• Method is based on an extension of the original
second-order Upwind Leapfrog three-time-level
advection scheme (Roe, 1993)

• Two-time-level non-oscillatory scheme for
quasilinear hyperbolic conservation laws

Applications of CABARET

• Applicable to compressible unsteady Navier-Stokes
Flow problems ranging from acoustic wave propagation
and vortical flows to shock wave interaction

• In Re~10000 calculations the method gives a very
good convergence without additional preconditioning,
down to Mach numbers as low as M~0.05-0.1

CABARET LES ocean modelling
• Because of hydrodynamic instability, the boundary layer, which occurs at the
left (western) domain boundary, is separated and a free jet in the eastward
direction is developed
• Time-averaged stream function in the top layer of the 3-layer model, CABARET
is ~ 30 times more efficient!

Grid 257x257

CABARET Conventional 2nd order central scheme

Grid 257x257 Grid 1025x1025

3-D backward facing step

Test case Low Mach number turbulent flow around a 3-D backward facing step

‘Mature’ solution courtesy of Prof. Vasily Kondakov,
NSI, Moscow

Re=5000
M =0.1
Grid: 10 points per step
height size=1
Inflow BC: laminar

Streamlines of average velocity field

Shows a correct length of
the recirculation zone

Why develop parallel CABARET?

• Original Fortran 90 code was developed around 1998

• Can handle up to a million grid points

• To resolve higher resolution grids required in high
fidelity LES simulations where Re>100000 we require
10 million grid points

• Locality of algorithm will lend itself well to distributed
processing – develop parallel code

Data decomposition

• CABARET is similar to a finite difference / finite
volume calculation

• Parallel version of the code already exists for a
structured orthogonal grid

• This project is concerned with developing a parallel
version based on an irregular hexahedral grid

• Next step is implementing a tetrahedral cell
structure

Parallel Data Decomposition

• For the data decomposition we use calls to the
graph partitioner Metis

• Metis produces minimal edge cuts for each partition
– thus minimising MPI communications

E.g. Four part decomposition for the backstep case

Code description

• PHASE1 - conservative predictor step

• VISCOSITY - computation of the cell centred viscous terms

• PHASE2 / MODULE- extrapolation step where the local cell-
based characteristic splitting is performed

• BOUND - applying physical boundary conditions for the
boundary cells

• PHASE3 - conducting the conservative corrector step

Main loops

• All calculations are local to a cell and it's six nearest
neighbour cells

• All main loops involve NSIDE calculations apart from
phase1

• Finite volume calculation in phase1 loops over the
APEXes

APEX CELL FACE

CELL (Hexahedral)

�

MPI communications

• Irregular decomposition – local numbering on each
cpu is non-contiguous

• Global to local mapping for SIDEs,APEXes, CELLs
and boundary SIDEs

• Decomposition is optimised for the SIDEs

Partition connectivity

• Each cpu stores connectivity between neighbouring
cpus and their SIDEs - NEIGH(I)

�

• Connectivity local to each cpu –
 cpu 1 : connect(2:3)=1, cpu 2 : connect(1)=1, cpu 3 : connect(1)=1

CELL Acpu 1 cpu 2

cpu 3

SIDE connectivity

• K=SIDELINK(L,I) where K and L are local SIDE
numbers and I is the neighbouring partition

• K and L both map to the same global SIDE number

CELL A
CELL B

SIDE C

Vectorisation

• All the main loops are SIDE based
– DO L=1,NSIDE

 IF (GEMSIDECELL(L,1)/=0)...

 IF (GEMSIDECELL(L,3)==1234)...

 END DO

will not vectorise !

Pointers

• Main arrays for the grid data, flux-type and
conservative terms are allocatable

– REAL(KIND=8), TARGET, ALLOCATABLE :: CELL(:)

�

– INTEGER, TARGET,ALLOCATABLE :: GEMCELLSIDE(:)

�

• Use Fortran90 data types

– TYPE TRANSFERS
– INTEGER, POINTER :: INTBLOCK(:)

�

– REAL(KIND=DP), POINTER :: REALBLOCK(:)

�

– END TYPE TRANSFERS
– TYPE (TRANSFERS) :: TRANSFER1
– ALLOCATE(TRANSFER1%INTBLOCK(4*NCELL))

�

– ALLOCATE(TRANSFER1%REALBLOCK(4*NCELL))

�

Transfers with pointers

• Set pointers
– TRANSFER1%INTBLOCK=>GEMCELLSIDE
– TRANSFER1%REALBLOCK=>CELL

• Can pass with separate calls

– CALL MPI_ISSEND(TRANSFER1%INTBLOCK,..
– CALL MPI_ISSEND(TRANSFER1%REALBLOCK,..

• Why not send the TRANSFER data type as an MPI_TYPE
– CALL MPI_TYPE_CREATE_STRUCT((2, BLOCKCOUNTS, OFFSETS,

OLDTYPES,TRANSFERTYPE, IERR)
– CALL MPI_TYPE_COMMIT(TRANSFERTYPE, IERR)

Initial performance

• Test initial parallelisation with the following HECToR
compilers and optimisation flags

– Cray FFLAGS = -O3 -Oaggress -Omsgs
– Pgf90 FFLAGS = -Minfo -Mneginfo -Mextend -fast -Munroll=n:4 -Mipa=fast,inline

-O3 -tp barcelona-64
– Pathscale FFLAGS = -Ofast -LNO:full_unroll=4 -march=barcelona

-OPT:malloc_algorithm=1 -LNO:simd_verbose=ON
– Gfortran FFLAGS = -march=barcelona -ffast-math -funroll-loops -O3 -ffixed-line-

length-72 -ftree-vectorizer-verbose=2

• See http://www.hector.ac.uk/cse/reports/compilers.php for
compiler performance results on a variety of other codes

http://www.hector.ac.uk/cse/reports/compilers.php

What takes most time?

One iteration of
CABARET algorithm

Performance

Backward facing step case (fixed problem size) with
NAPEX=111741 NCELL =100000 NSIDE =311400
270 iterations

Initialisation

Performance

Backward facing step case (fixed problem size) with
NAPEX=111741 NCELL =100000 NSIDE =311400
270 iterations

3-D backward facing step

Backward facing step case with NAPEX=111741
NCELL =100000 NSIDE =311400 mature solution

Paraview plot of
x component of
velocity

Conclusion

• CABARET method up to 30 times more efficient for
 some CFD applications - on coarser grids

• For Re~10000 and subsonic M - method gives good
convergence without preconditioning

• Parallel code uses irregular domain decomposition

• Main loops will not vectorise – further work!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

