MicroMagnetic modelling of naturally occurring
magnetic mineral systems

Dr. Chris M. Maynard
EPCC, The Unwversity of Edinburgh,
James Clark Maxwell Building,
Kings Buildings, Mayfield Road,
Edinburgh, EH9 3J7

June 8, 2011

Abstract

This report presents the results of a HECToR dSCE project to a
port a serial code modelling the magnetic properties of mineral systems
to HECToR. The original project plan was to implement a semi-parallel
code, using the Sundials CVODE library to perform the ODE solve in
parallel, using a gather/scatter to transform between the serial parts of
the code. This turned out to be impractical, and the PETSc library was
adopted to develop a parallel version of the code instead. A bug was
discovered in the PETSc - Sundials interface which meant a working
parallel code could not be delivered. However, significant progress
had already been made in developing the parallel code. Most of the
remaining tasks required for a parallel code were supported by an Edikt
project.

Contents

1

2

Introduction

Algorithmic Details

The Work Plan

Code Status Before Start of Project
Semi-Parallel Implementation

Parallel Implementation with PETSc

6.1 Parallel Matrix/Vector Assembly
6.2 Parallel CVODE for Time Evolution
6.3 Parallel RHS Vector
6.4 General Matrix Vector Enhancements
6.5 Expensive Field Calculations within the Code

Edikt mini-project
Conclusions

Acknowledgments

11
12
14
15

17

17

18

1 Introduction

There are many problems in the geosciences that rely on the ability to
accurately determine the magnetic properties of minerals and the stability
of the palaesomagnetic recordings that they contain. For example, the in-
vestigation of the behaviour of the geomagnetic field depends largely on the
observed field variations on or above the Earths surface. Temporal records of
direct observations stretch back less than two hundred years, and so a more
detailed analysis is dependent of ancient recordings made in rocks as they
are formed. Geological interpretation of the directional recordings of the
ancient field led to the discovery, over 50 years ago, that the Earths oceanic
and continental plates are continuously moving. Today, a more thorough un-
derstanding of magnetic mineralogy enables a detailed analysis of not only
of fine scale continental block motions and rotations, but also emplacement
temperatures and thermo-temporal history of the rocks to be determined.
A further, but my no means only, example is that magnetic mineralogy is
frequently used as a proxy for determining palaeoclimate variations.

All these applications depend on an understanding of how the magnetic
properties of minerals change with the mineral microstructure, chemistry,
grain geometry and inter-grain magnetic interactions. The complexity and
diversity of naturally occurring magnetic minerals makes the numerical mi-
cromagnetic problem a much more difficult task than that applied to the gen-
erally more ideal man-made recording media. The increasing sophistication
of environmental-magnetic investigations relies on a high-fidelity magnetic
re-coding processes occurring in natural magnetic mineral systems. Yet our
understanding of the fundamental processes that enable common magnetic
minerals to record the local geomagnetic fields direction and intensity and
to retain this information over geological time scales is far from complete.
A much better understanding of the recording process in natural materials
is required in order to assess the reliability of rock-magnetic recordings.

Equilibrium magnetic domain structures are determined by integration
of the Landau-Lifshitz-Gilbert equation of motion. Finite element meth-
ods are the preferred technique when dealing with irregular geometries since
magnetic domain structures are sensitive to the accuracy with which grain
geometries can be modelled. The code, MicroMag, before the dCSE existed
as a serial code (written in Fortran90). Some initial work had been under-
taken in investigating methods of parallelisation. This was the basis for the
work-plan submitted as part of the dCSE proposal.

2 Algorithmic Details

The numerical micromagnetic model represents the magnetisation within
a structure by 3D Cartesian vectors (each of unit length) placed at the N
vertices of a finite element (FE) mesh. Tetrahedral elements are employed
to reduce the discretisation error. The size of the computational cell is
governed by the micromagnetic quantity termed the exchange length, which
restricts the maximum cell size.

Equilibrium magnetic domain structures are determined by a minimisa-
tion of the total free magnetic energy of the system, which is achieved by
integration of the Landau-Lifshitz-Gilbert (LLG) equation of motion. Dy-
namical solutions require the LLG equation of motion to be solved for every
time step. The total effective field contributions include a computationally
intensive non-local (magnetostatic) field calculation, and also the local ex-
change, anisotropy and externally applied field calculations. Of the previous
four component fields only the magnetostatic field is non-trivial. It is also
the most computationally intensive part in the determination of the total
effective field. A finite volume approach is employed to calculate the ex-
change and anisotropy fields and is essentially determined by multiplication
of the stiffness matrix by the global magnetisation vector.

The magnetostatic field is solved via a scalar potential approach. This
requires the solution of the Poisson equation for the divergence of the mag-
netisation and solution of the Laplace equation for the boundary vertices.
An efficient boundary element method is employed to approximate the long-
range interaction. Both equations are discretised using a Galerkin scheme
for a linear finite element solution of the equations. The solution is obtained
via a standard conjugate gradient solver. The storage required in the solu-
tion of the Poisson equation is extremely sparse hence efficient sparse matrix
methods are essential. Also, the tetrahedral finite element basis functions
provide an efficient way of calculating the remaining three component fields
by simple sparse matrix-vector multiplication. Bespoke sparse matrix man-
agement is required due to the data layout which arises from the efficient
construction of the initial finite element basis functions.

However, the matrix arising from the boundary element approximation
to the long-range interaction is of size N2, where N is the number of vertices
on the material boundary. In a parallel code this dense matrix can be
distributed efficiently amongst each individual processing unit. Integration
of the stiff system of ordinary differential equations (ODEs) arising from
the LLG equation of motion requires an implicit solver and thus requires
the approximate inverse to a sparse 3N system of linear equations. The
use of explicit methods would be ineffective due the restrictive size of the

time-step controlled by the stiffness of the system. The implicit method is a
variable order solver which is based on a multi-step backward Euler method
with variable coeflicients.

3 The Work Plan

The original proposal submitted to the dCSE panel requested a combined
effort from both NAG and EPCC staff for a full parallelisation of the code
with 16 months of effort. The panel approved the proposal but awarded 6
months of effort in order to get a working parallel code. The work plan for
the 6 month project is given below in three work package (WP)

WP1 Semi-Parallel Implementation Effort: 3 months

WP1.1 Serial code profiling for two benchmark test cases

e Single non interacting Sphere with 100000 finite element cells
e Non interacting Framboid with 100000 finite element cells

WP1.2 Implement calls to the parallel CVODE solver [1]

e By decomposing the finite elements with a regular ordering

e Study of code performance paying particular attention to
load balancing Outputs

D1 WP1 Deliverables
D1.1 Profile of the serial code giving particular attention to de-
tail regarding the performance of CVODE

D1.2 Short technical note to describe the general implementa-
tion of CVODE to MicroMag

D1.3 Profile of MicroMag using parallel CVODE
D1.4 Version of MicroMag which uses parallel CVODE

WP2 Fully-Parallel Implementation. Effort: 2 months

WP2.1 Implement calls to the Metis library [2] to give an automated
decomposition for a Cubit tetrahedral mesh (as used by Micro-
Mag). This will be done as a preprocessing stage

WP2.2 Implement a local to global mapping for the finite element
numbering system within MicroMag which will enable the code
to use the decomposition produced in WP2.1

WP2.3 Validate fully-parallel MicroMag with the test cases in WP1.1
D2 WP2 Deliverables

D2.1 Profile of the fully parallel MicroMag code giving particu-
lar attention regarding the performance of CVODE

D2.2 Version of MicroMag which uses parallel CVODE and par-
allel effective field calculations

D2.3 MicroMag code demonstrating parallel scalability up to
256 HECToR processing cores

WP3 Final report and dissemination. Effort: 1 month

WP3.1 Write a technical report detailing work for the project as a
whole

D3 WP3 Deliverables

D3.1 Technical report on the work performed during the project
D3.2 A parallel version of the MicroMag code

4 Code Status Before Start of Project

The MicroMag code had been in existence for a number of years and
in common with many other scientific codes had been developed by several
different people, without a clear development plan resulting in a code that,
whilst was rich with scientific functionality, was also difficult to maintain
with some legacy features.

Prior to the main software project, core CSE effort had been employed
to replace the deprecated DVODEpk ODE solver with a modern library,
CVODE. This itself resulted in a modest speed up of the code in serial.
However, the CVODE library can also be called in parallel, and this gave
an initial starting point for the current dCSE project by looking at how
MicroMag could be run in parallel. Prior to the start of the main dCSE
project NAG CSE re-factored the original, serial code. This resulted in
a code that was much simpler, without obsolete functionality or historical
features, but also without the use of the CVODE library.

5 Semi-Parallel Implementation

Starting from the new, refactored code, the serial implementation of
CVODE had to be redone. Whilst this wasn’t a huge task and the original
work could be used as a guide, it still consumed some effort. However, this
initial effort resulted in a marked improvement in performance. For a sphere,
with 20K vertices and 100K finite elements running in serial on the XT4,
took DVODE 3098.86 seconds for a single external field step, whereas the
CVODE version took 1890.35 seconds. This represents an impressive speed
up factor of 1.64.

For the semi-parallel version, computationally the problem can be repre-
sented in two parts, the implicit ODE solver, and the so-called Right hand
side (RHS) function which is required to determine the time-step update
of the implicit ODE solver. The RHS function determines the energies de-
scribed in Section 2 and it is the most computational intensive part of the
code. The semi-parallel strategy would be to compute the RHS in serial,
then scatter the values of the energies computed in the RHS across the par-
allel elements. The call to the CVODE solver would be done in parallel, and
then the results of the time-step gather back together, to compute the next
RHS in serial again.

This gather/scatter serial - parallel - serial computation was decided
upon as a staged development strategy, the first stage being to implement
the parallel CVODE solver call, with the RHS in serial. The parallelisation
of the the RHS for a fully parallel code would be implemented in a later
package.

When attempting to implement this in the refactored, simplified code,
it became clear that this approach simply wouldn’t work, due to the way
the user supplied RHS function was called by the CVODE library for each
time step. When using the CVODE library, the user calls a set up routine
in parallel, which sets up the sizes of the arrays to be used by the CVODE
library, as shown in the code fragment below.

NEQ=3*NMAX

I calculate the local NEQ and the displacements
NEQ_local=NEQ/nprocs

call fnvinitp(comm, 1, NEQ_local, NEQ, IER)

call fcvmalloc(T, Y, METH, ITMETH, IATOL, RTOL, ATOL, $
I0UT, ROUT, IPAR, RPAR, IER)

where NMAX is the number of finite elements of the mesh and hence this
determines the size of the arrays representing the matrices. NEQ_local is
then the size of the array local to each processor.

In the main program, the call to the CVODE ODE solver is made in
parallel. The user supplied RHS function, which is called by the CVODE
solver, is also called in parallel. So, all the data structures have local, not
global scope.

CALL FCVODE(TOUT, T, Y, ITASK, IER)

The call to the CVODE solver is shown in the code fragment above, passing
the array which holds the total derivatives of the global magnetic energy,

Y. The user supplied RHS function named FCVFUN is shown in the code
fragment below,

SUBROUTINE FCVFUN (T, Y, YDOT, IPAR, RPAR, IER)
use mpi_global

IMPLICIT NONE

REAL (KIND=DP) :: T,Y(3*NMAX), YDOT(3*NMAX)

The array Y is passed to the subroutine FCVFUN by the CVODE library,
and is local in scope, so however the array is setup by the fnvinit routine
and populated by CVODE. Whilst the local scope array can be declared any
size the programmer wishes, the data is spread out across the processors,
so there is no array with a complete global copy of the data. In the serial
version, it didnt matter because the initial setup was serial, and so the whole
array is populated.

The original idea was to compute the RHS in serial on a single (master)
process, and then scatter the data to all processors. The array which holds
the data in the RHS function, being local in scope only holds NEQ_local
and not the whole data, so computation cannot be done in serial because
the data is already distributed. The serial computation could not be im-
plemented without first have to gather all the data first. Whilst it would
be possible to override the CVODE parallel implementation and implement
this by hand, and even get it to work correctly, the high unforeseen commu-
nication overhead would have seriously undermined any performance gain
from working in parallel. The ultimate goal was a fully parallel code, so
after consulting with the PI and NAG CSE it was decided to abandon the
semi-parallel strategy and move to develop a fully parallel code, where the
RHS is implemented in parallel from the beginning.

6 Parallel Implementation with PETSc

After further discussions with NAG CSE, it was suggested that using
the PETSc library [3] would have significant benefits both for performance
and for future development. After reviewing the functionality contained in
PETSc, it was agreed to use the library.

PETSc contains a distributed parallel layer, with support for data types
such as vectors and sparse matrices, as required by MicroMag and methods
for manipulating them. Critically, the SUNDIALS CVODE library [1] can
be called from PETSc. There is significant support for Krylov subspace
solvers which are required to determine the RHS. Moreover the Finite Ele-
ment partitioner Metis, and its parallel variant Parmetis can also be called

from PETSc. Future development work could allow the partitioning of the
unstructured grid to be done at run time rather than at a preprocessing
phase as originally planned in WP 2.1-2.2.

At this stage, approximately half the development time had been used
to perform three tasks.

1. Re-implement the calls to CVODE in serial in the refactored code.

2. Attempt to implement the semi-parallel strategy and reveal its flaws,
leading to its abandonment.

3. Evaluate the PETSc library functionality and decide on new strategy.

With less than three months left of development effort to re-write the
code to make use of the PETSc data parallel data structures, and calls to
the various solvers, there was an uncontrolled risk that there wouldn’t be
sufficient time. The risk was uncontrolled in the sense there was no time
left for any contingency if there were any unforeseen problems with the de-
velopment. However, it was felt there were significant benefits for future
development, including performance, portability and additional functional-
ity, such as using Parmetis, that it was decided to use PETSc despite the
small amount of time remaining.

6.1 Parallel Matrix/Vector Assembly

To make efficient use of the PETSc library, the correct use of the PETSc
data parallel structures for Matrices and Vectors is crucial for performance.
Most of the work necessary to use PETSc was contained in constructing and
populating these data structures. The MicroMag code reads in the metis
mesh decomposition, and the uses this, along with information about the
mineral grain, which is also an input, to create a series of sparse matrices
which are then used to update the magnetic field, which in this context is
a vector. The MicroMag code constructs the values and stores them in a
matrix storage format called SLAP column format.

This is similar to the more generic sparse format compressed sparse col-
umn (CSC) format, but order of the stored values changed so that the
diagonal element is stored first for each column. The default parallel de-
composition for PETSc is decompose the matrix by row, rather than col-
umn, across the number of processing elements. This potentially made the
task rather more complicated. However, with two notable exceptions, all
the matrices in MicroMag are symmetric. So, the column major order of
the micromagnetic data structures can be easily translated into a row major
order, and then decomposed. In some sense this is both natural and helpful

translation as MicroMag is a Fortran90 code and multi-dimension arrays
are naturally column major order i.e. left most index is fastest moving, and
PETSc written in C which has the opposite convention. The exceptions to
the symmetric matrices can be dealt with as special cases.

The PETSc library has specific data structures for sparse matrices. The
CSR format is referred to as AlJ. To use this format in parallel, a method,
named MatMPIAIJSetPreallocation, is called to create and allocate the
data structure. PETSc’s default parallel decomposition for matrices is by
row. The allocation method makes the distinction between the diagonal
block of matrix elements (where the column values are the same as the
rows “owned” by the MPI task, and the non-diagonal block of elements
(where the column values are different from the rows “owned” by the MPI
task). These are passed as arguments of the method as d_nz the diagonal
number of non-zeroes and o_nz, the off-diagonal number of non-zeroes. In
particular the documentation states: By setting these parameters accurately,
performance can be increased by more than a factor of 50. Determining and
correctly setting these parameters is key to getting good performance from
the PETSc library.

For example in the new MicroMag code which uses PETSc, we now use
the SLAP column format to determine the number of non-zeroes which are
in the diagonal block.

d_nnz=0

o_nnz=0

count=1

do i=(nmax_off), (nmax_off+nmax_1-1)
nze_l=nze_1+(CNR(i+1)-CNR(i))

do j=CNR(i),CNR(i+1)-1

if ((RNR(j).ge.nmax_off) .and. $

$ (RNR(j).1lt.(nmax_off+nmax_1)))then
! we are in the diagonal block
d_nnz(count)=d_nnz(count)+1
nze_d=nze_d+1

else

o_nnz(count)=o_nnz(count)+1

end if

end do

In the code fragment above, each processor determines the whole matrix in
SLAP column format, but this involves replicated data. So each process
loops over only the number of elements that it owns. For each column of
the matrix it owns, it then loops over the column start (CNR(i))to end

10

(CNR(i+1))and counts the number of non-zero elements (nze_1) ,and how
many are diagonal (d_nnz)and off-diagonal (o_nnz).The PETSc matrix
data structures are then allocated as shown in the following code fragment.

CALL MatCreate(comm,PA,mpierr)

CALL MatSetSizes(PA,nmax_1,nmax_1,NMAX,NMAX, ,mpierr)

CALL MatSetType(PA,MATMPIAIJ,mpierr)

CALL MatMPIAIJSetPreallocation(PA,0,d_nnz,0,0_nnz,mpierr)

and the local PETSc matrix populated from the replicated SLAP column
format matrix as shown in the code fragment below.

call MatGetOwnershipRange(PA,istart,iend,mpierr)
do i=istart,iend-1

do j=CNR(i+1),CNR(i+2)-1

call MatSetValue(PA,i, (RNR(j)-1),YA(j), $
INSERT_VALUES ,mpierr)

end do

end do

write(messageText, $

("Matrix PA B/C/D allocated and assigned"))

CALL writeMessage(nonzerostiff,messageText,0)
CALL MatAssemblyBegin(PA,MAT_FINAL_ASSEMBLY,mpierr)
CALL MatAssemblyend(PA,MAT_FINAL_ASSEMBLY,mpierr)

6.2 Parallel CVODE for Time Evolution

Once the data structures have been constructed in parallel, the compu-
tational methods could be tackled. There were two main tasks to enable this
with the PETSc MicroMag code : the call to the CVODE solver and the
RHS function which itself would call the Krylov subspace solver methods in
PETSc such as CG. The PETSc library comes with documentation and an
extensive set of examples demonstrating how various computational meth-
ods can be called. Whilst examining and running the SUNDIALs example
it was discovered that there is a bug in the PETSc - SUNDIALSs interface
for anything other than a trivially small number of processors. The CVODE
solver would run, but report that it had run for the maximum allowed num-
ber of steps without reaching the final time step. The example would run
correctly in serial, and if the number of MPI tasks didn’t exceed 6, and if
the system size was not increased more that 10%. The maxumim allowed
number of steps, and the time taken can also be altered.

Varying all the allowed parameters did not change this behaviour. For
example, running the PETSc example 4 (ts/examples/tutorials/ex4) for

11

SUNDIALS time-stepper (ts) solver in version 3. 1-p3, on 128 nodes of HEC-
ToR, and increasing the system size to m = 1024, where the system size is
given by m?, resulted in the following error.

[CVODE ERROR] CVODE
At t = 0.182961, mxstep steps taken before reaching tout.

This was reported to the PETSc developers who confirmed that there was
indeed a bug. They gave a commitment to fixing the bug, but without any
timescale for doing so. This presented a significant problem to the successful
completion of the project. It was decided that the best course of action was
to replace the call to the SUNDIALS solver, with a simple EULER, solver
which is a native PETSc method. The code could then run correctly in
parallel, if with limited scientific use-ability. The solver could be altered to
call the SUNDIALS solver once the PETSc developers issued a patch or new
release. A further problem was the amount of time consumed discovering
and subsequently confirming the bug with the PETSc developers. With
time limited to produce a working parallel code a successful conclusion to
the project would be difficult.

6.3 Parallel RHS Vector

The RHS function still had to be implemented using PETSc code, and a
number of computational tasks needed to be implemented, using the PETSc
matrix-vector manipulation methods to calculate the various contributions
to the total energy. The MicroMag code holds the magnetic field in two dif-
ferent data structures. The first is a two-dimensional array of size m (NMAX, 3)
where NMAX is the number of finite element vertices, and 3 represents the
three physical dimensions in Cartesian space. The second data structure is
a linearised one dimensional array, Y(3*NMAX)

The code switches between these two data structures as the Sundials
solver expects a one dimensional array, but it is both more natural to code,
to use the other data structure. In the main loop, the magnetic field is
packed into the linearised array, and the solver called. The RHS function is
called by the solver, and one of its arguments is Y. The RHS function then has
to unpack this one-dimensional array back into the two dimensional array.
The PETSc data structures called Vectors are not arrays in the FORTRAN
sense, and can only be manipulated by calling the appropriate methods.
However, PETSc also has other data structures and methods called index
sets, and these methods act on PETSc vectors transform the data between
the two views as required. These have also been implemented, in particular,
a module was developed to transform vectors between the linearised- and
three-vector data structures.

12

A code fragment showing the use of index sets to transform from the
linearised vector, to the three vector is shown below.

SUBROUTINE xyzToComponents(linearVec,compVec,Nsize)

| converts a linearized vector of size 3*Nsize into an
I array of size 3, vectors of size N

I i.e. convert to a three-vector of x,y and z components
#include "finclude/petscsysdef.h"

#include "finclude/petscvecdef.h"

use petscVec

implicit none

Vec linearVec

Vec ,pointer :: compVec(:)

PetscInt Nsize

integer :: ierr, comm

IS xyz, comp

VecScatter scatter

comm=PETSC_COMM_WORLD

I x compVec first

CALL ISCreateStride(comm,Nsize,0,3,xyz,ierr)

CALL ISCreateStride(comm,Nsize,0,1,comp,ierr)

CALL VecScatterCreate(linearVec,xyz,compVec(1l),comp, $
scatter,ierr)

CALL VecScatterBegin(scatter,linearVec,compVec(1), $
INSERT_VALUES,SCATTER_FORWARD, ierr)

CALL VecScatterEnd(scatter,linearVec,compVec(1), $
INSERT_VALUES,SCATTER_FORWARD, ierr)

CALL VecScatterDestroy(scatter,ierr)

CALL ISDestroy(xyz,ierr)

! dont need to destroy comp, as it is the same

I for x,y and z

The fragment shows the translation for the X component, and this code is
similar for the Y and Z components. Another subroutine has been written
to perform the inverse translation. The RHS function performs the following
tasks:

e Convert local linearised array Y to 3-d array m .

e (Calculate the total energy htot for each element by calling function
totalFieldVec.

e Calculate the derivative of the total magnetic field YDOT, which depend
on htot and m.

13

The CVODE solver then uses YDOT to update Y. These three tasks have been
implemented.

The MicroMag code makes use of advanced FORTRAN 90 features, such
as pointers, which are supported by the PETSc library, to create the three-
vectors, as shown in the code fragment below.

Vec terml,term2

Vec , pointer :: htot(:), mxyz(:), ydot_xyz(:)
CALL VecCreateMPI(comm,nmax_1,NMAX,terml,mpierr)
ithree=3

CALL VecDuplicateVecsF90(terml,ithree,htot,mpierr)

The function totalFieldVec performs the following tasks to calculate the :

e total force totfx for the de-magnetisation by calling function calcdemagVec.

e anisotropic contribution to the energy, hanis.

e demagnetisation contribution to the energy, hdemag.
e exchange contribution to the energy, hexch.

e external contribution to the energy, hext.

The total energy htot is then determined from the sum of the components
for hanis, hdemag, hexch and hext. These tasks have all been implemented.

6.4 General Matrix Vector Enhancements

The new MicroMag code makes use of the PETSc data manipulation
methods, which provide methods for point-wise combinations, which com-
bine the data on a point-by-point basis, for example, the code which will
square all the values of a vector is shown below,

CALL VecPointwiseMult(asSqr(1),as(1),as(1),mpierr)

here both as(:) and asSqr(:) are three-vectors, 1 being the Xcomponent.
Several variations of axpy methods exist for combining vectors and scalars,
for example,

CALL VecAXPBYPCZ(as(3),Prot(1,3),Prot(2,3),Prot(3,3), $
mxyz (1) ,mxyz(2) ,mpierr)

where as(3), mxyz(1) and mxyz(2) are individual components of three-
vectors and Prot (:,:) is an array, thus individual components are scalars.
The routine evaluates the following expression,

Z=axT+[xy+yx72 (1)

—

where the order of the arguments of the routine is 2, a, 3, v, T, ¥.

14

6.5 Expensive Field Calculations within the Code

To compute demagnetisation and exchange energies, which are the most
computationally expensive of the MicroMag code, the stiffness matrices are
determined at the start of the program, and assigned to PETSc matrices.
The Matrix-vector products are shown below.

! now compute Hdemag

! Hd_x(i)=totfx(j)*YAB(ij) and similar for y and z
I Petsc matrix is called PAB

I allocate Hdemag

CALL VecDuplicateVecsF90(totfx,ithree,hdemag,mpierr)
CALL MatMult (PAB,totfx,hdemag(l) ,mpierr)

CALL MatMult(PAC,totfx,hdemag(2) ,mpierr)

CALL MatMult (PAD,totfx,hdemag(3) ,mpierr)

I Compute hexch

lhexch_x=m_x*YA [PA in Petsc matrices]

CALL VecDuplicateVecsF90(totfx,ithree,hexch,mpierr)
CALL MatMult (PA,mxyz(1),hexch(1l) ,mpierr)

CALL MatMult (PA,mxyz(2),hexch(2) ,mpierr)

CALL MatMult (PA,mxyz(3),hexch(3) ,mpierr)

The function caldemagVec is the sum of two scalar potentials. The first,
¢1, receives contributions to the force vector (f;) from the divergence of
the magnetic field, V - m, and a Neumann boundary condition. A Krylov
subspace solver then calculates, ¢1, by solving the linear system

Yag1 = fi (2)

where Y}, is the finite element stiffness matrix determined during the set up.
The second potential, ¢o is created by an asymmetric contribution to the
force vector fs, and is determined by a second Krylov subspace solution of:

Yaro2 = f2 (3)

The solution of ¢o depends upon ¢, and the boundary conditions im-
posed here are to approximate an infinite volume. The resulting stiffness
matrix Y g is then asymmetric. The total magnetostatic potential is the
sum of the two components ¢1 + ¢2 and the resulting demag field is the
gradient of this potential, which is found using the spatial components of
the finite element basis functions.

Unfortunately, the dCSE project ran out of time before the calcdemagVec
function could be implemented. Whilst this was ultimately disappointing,
significant progress had been made in taking a legacy serial code and devel-
oping a fully parallel code which now has the potential for code performance

15

by using a modern data parallel layer library, PETSc. Several obstacles
caused delays to this project which led to it failing to complete on time.
The critical issues are listed below:

—_

. Starting from scratch with refactored code.

[\)

. Flawed parallelisation strategy.

w

. Bug in third party library.

4. Short term project lacked contingency time to compensate delays.

The first issue meant that extra work had to be done to before the
planned work could be started. This took extra time, but turned out to be
a necessary step. The flawed strategy was a failure of the planning stage
of the project. However, it was only when attempting the semi-parallel
decomposition with the simpler refactored code could the strategy be dis-
covered as awed. Working with the refactored code also meant that using the
PETSc library was possible. The bug in the PETSc-Sundials interface was
unforeseen and took a significant amount of the remaining time to discover
and report. The original proposal requested sixteen months, to parallelise
this code. The various delays, bug hunting in libraries and changes to the
work plan eventually meant that only two months were available to spend
developing parallel code with PETSc.

At the end of dCSE project time, the code ran in parallel, but lacked
some of the necessary scientific functionality. At this point, the MicroMag
code status can be summarised as that after the pre-processing phase us-
ing METIS, the various stiffness matrices for the particular problem, the
boundary conditions and the magnetic field are set up in serial. PETSc
parallel data structures are created and populated from the serial ones. The
time evolution loop is executed and the PETSc native EULER solver is called
for each time-step. The RHS function calculates the energies, without the
contribution to the demagnetisation from the total field.

To complete the project, two tasks would require implementation: The
PETSc data structure representing the asymmetric stiffness matrix Yap
would need to be populated from the serial MicroMag one, taking account of
the row-column transformation. The function calcdemagVec implemented,
with calls to the Krylov subspace solvers in the PETSc library. Once these
two tasks have been completed the code would then be scientifically veri-
fiable, if not especially efficient. On August 31 2010, the last day of the
project, the PETSc developers issued a patch to fix the bug. This came too
late to be included in the project, but the code could quite easily be changed

16

to use the Sundials solver, instead of the EULER solver. At this stage the
code would be both scientifically correct, and algorithmically efficient.

Further development could also include, the PETSc data structures,
which would be set up using the wrapper functions, so the same code runs
in parallel and serial, and running in serial or parallel becomes a run-time
option. Future development work would focus on the set up phase. Firstly,
the PETSc data structures for the stiffness matrices would be populated in
parallel from the outset, without determining them in serial before hand.
Secondly, the ParMetis-PETSc interface would allow ParMetis to be called,
thus the Finite element mesh composition to be determined at run-time,
eliminating the pre-processing phase.

7 Edikt mini-project

The Edikt project [4] funded two months FTE of effort, in the first
quarter of 2011. The PETSc developers issued a patch for the bug in the
interface to SUNDIALS, which meant that the micromag code could now
call the CVODE library. The remaining functionality required for a parallel
code, outlined in section 6.5, was implemented. Testing and benchmarking
of up to 16 nodes (384 cores) of the XE6, phase 2b machine revealed a
subtle bug in the construction of one of the matrices, and some poor scaling
performance. Further work is required to fix the bug, and investigate the
cause of the poor performance. The most likely cause of poor performance
when using PETSc matrix data objects is the construction and population
of the matrices. The bug and poor performance may not be unrelated.

8 Conclusions

The original project was unable to deliver the working parallel code
described in the work plan. Several issues resulted in the project suffering
multiple delays, and changes to the work plan. The short-term nature of
the project meant there was no time for contingency action to recover the
project within the timescale and this was a very disappointing outcome.
However, significant progress had been made to developing the code and with
additional effort from the Edikt mini-project, a working parallel MicroMag
code was achieved.

To summarise, the original code has been significantly refactored. This
code was greatly simplified, with much obsolete functionality removed from
the starting code. The serial version now uses the modern CVODE library
from the SUNDIALSs software suite. This has resulted in 64% speed up of the
code in the test case of a 100K vertex sphere. The parallel MicroMag code

17

has had extensive modifications made from the serial version. This code now
uses the PETSc library and has had its major data structures implemented
using the PETSc data parallel layer. Significant progress has been made
to developing the parallel code. By using modern coding techniques in
Fortran 90, such as modules to abstract and re-use independent functional
units, and by employing a modern high-performance scientific library the
future development, portability and sustainabilty of the code base has been
dramatically increased.

9 Acknowledgments

This project was funded under the HECToR Distributed Computational
Science and Engineering (CSE) Service operated by NAG Ltd. HECToR - A
Research Councils UK High End Computing Service - is the UK’s national
supercomputing service, managed by EPSRC on behalf of the participating
Research Councils. Its mission is to support capability science and engi-
neering in UK academia. The HECToR supercomputers are managed by
UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk

References

[1] The SUNDIALSs library https://computation.llnl.gov/casc/sundials/main.html
[2] The Metis library http://glaros.dtc.umn.edu/gkhome/views/metis
[3] The PETSc library http://www.mcs.anl.gov/petsc/petsc-as/

[4] The Edikt project http://www.edikt.org.uk/edikt2/

18

