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Abstract

CP2K is a freely available atomistic and molecular simulation code, able to study
of a wide range of molecular and bulk materials with methods including classical
potentials, density functional theory (DFT), Hartree-Fock and post-HF methods.
Following two earlier dCSE projects, we report here on an additional 6 months of
work to optimisise the DBCSR sparse matrix multiplication library embedded within
CP2K. Efficient and scalable sparse matrix operations are shown to benefit existing
users of the code by reducing time to solution for typical simulations, and has enabled
development of new algorithms including for the fully linear scaling DFT based on
density matrix iterations.
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1 Introduction

1.1 CP2K

CP2K][1] is an open-source program written in Fortran 95 for atomistic and molecular
simulation. The code is most well-known for it’s implementation of the Quickstep[2] lin-
ear scaling DFT algorithm, but has been designed in an extensible and efficient manner
thus allowing users a wide choice of simulation methods from classical, semi-empirical
and DFT to Hartree-Fock and the recently added Mgller-Plesset second order perturba-
tion theory (MP2). CP2K consists of over 800,000 lines of code and is developed by a
distributed team of researchers, mostly based in Switzerland, but also including the UK.
CP2K is the third most heavily-used code on HECToR (data from 21 Dec 2010 - 3
October 2011), consuming 8.48% (731193 AUs) of system usage, behind only CASTEP
(9.21%) and VASP (12.11%). Therefore we believe the work done under dCSE funding|[3][4]
greatly impacts the scientific output of HECToR as a whole. Section 3.3 of this report
advises HECToR users how they can achieve the best possible performance from CP2K.

1.2 HECToR

HECToR|[7] (High End Computing Terascale Resource) is the UK National Supercom-
puting Service, and consists of Cray XE6 hardware. During this project, the Phase 2b
and Phase 3 components of the system were used.

The Phase 2b XE6 system consists of 1856 compute nodes, each containing two 2.1
GHz 12-core ‘Magny-cours’ AMD Opteron processor and 32 GB of main memory, giving
1.33 GB per core. Each processor is coupled to a Cray Gemini routing chip, providing a
high bandwidth and low latency 3D torus network. The peak performance of the system
was 360 TF, and ranked 16th in the June 2010 Top 500 list.

For Phase 3, the processors have been replaced with 16-core 2.3 GHz ’Interlagos’
AMD Opteron processors, giving a total of 32 cores per node, with 1 GB of memory per
code. The addition of another 10 cabinets (928 compute nodes) in Jan 2012 will increase
the peak performance to over 820 TF.

In addition, thanks to the support of Prof. Hutter and the HP2C project we have
access to the Rosa (XT5 12-core), Palu (XE6 24-core) and Todi (XK6 16-core) systems at
CSCS in Switzerland. This allowed continued testing of CP2K on a range of multi-core
systems, and a development platform when HECToR was unavailable.

2 Objectives and Results

It should be noted that in contrast to prior CP2K dCSE projects where optimisation
was carried out with the support of the development team, but on fairly independent
sections of the code, in this project the optimisation was carried out at the same time as
the DBCSRI5] library was under active development. It is therefore difficult to seperate
the benefits of the dCSE-funded work from the wider development of DBCSR, although
in the following section of the report we will detail exactly what work was carried out
and show performance results for all changes made.

To quantify the performance of the code, we compare two versions of CP2K on the
most recent HECToR hardware (Phase 3, XE6, 32 cores per node) - CP2K 2.1.390 (1st



CP2K - H20-64 benchmark

128

64

——MPI
-+=-MPI (Oct 2010)
—=—2 threads
-#-2 threads (Oct 2010) [—
—*—4 threads

-+-4 threads (Oct 2010)

— -linear

Performance

32

32 64 128 256 512 1024
Cores

Figure 1: Performance of H20-64 benchmark on HECToR comparing Oct 2010 and Dec
2011 versions of CP2K (Performance normalised to Oct 2010, 32 cores)
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Figure 2: Performance of H20-1024 benchmark on HECToR comparing Oct 2010 and
Dec 2011 versions of CP2K (Performance normalised to Oct 2010, 256 cores)

Oct 2010), and CP2K 2.3.r12105 (22nd Dec 2011). The benchmark inputs H20-64 and
H20-1024 are molecular dynamics runs using cubic cells of 64 and 1024 water molecules
respectively. These represent typical and fairly large systems that might be studied



currently with CP2K. Both use the GTH Basis Set[9] (TZV2P) and the PBE[10] and

PADE exchange-correlation functionals respectively. The performance of both versions

of CP2K, for varying numbers of threads per MPI process is shown in figures 1 and 2.
Several performance objectives were stated in the project proposal:

e Mixed-mode OpenMP/MPI : we expected to bring performance up to par with
pure MPI for compute dominated runs. For communication-dominated runs we
expected approximately a 30% improvement over pure MPI.

For the H20-64 benchmark on 32 cores is mostly compute dominated (approx-
imately 15% of the runtime is spent in communication). Here we see that the
mixed-mode code still lags a little way behind pure MPI (9% for 2 threads, 42%
for 4 threads). However, only about 40% of the runtime is spent in DBCSR, so
there are still significant other areas of the code that do not have as good threaded
performance.

In the communication-dominated regime (e.g. on 512 cores, 39% is communica-
tion), we see that using 2 threads per MPI process gives a speedup of 22% over
pure MPI.

The larger H20-1024 benchmark spends about 70% of its runtime in DBCSR.. Here
the goal of achieving equal performance between mixed-mode and pure MPI has
been achieved for compute-dominated runs (on 256 cores, 12% is communication).
In particular, compared to the Oct 2010 version of the code, the performance with
2 threads per process has been increased by 18% and for 4 threads per process by

35%.

Similarly to H20-64, we see that as the total number of cores is increased and
communication begins to dominate, the mixed-mode code begins to perform better
(e.g. an improvement of 29% over pure MPI on 4096 cores).

Extensive testing of similar benchmark inputs ranging from 32 to 2048 water
molecules has been performed by Joost VandeVondele on the Cray XE6 ‘Monte
Rosa’ system at CSCS. Analysis of these results showed that the absolute fastest
time to solution for all problem sizes could be achieved using 2 OpenMP threads
per process.

e In the compute-bound regime, we expected a 10% improvement.

The H20-64 results on 32 cores show an improvement over the Oct 2010 code of
7% (pure MPI). For H20-1024 there is little change in the peformance for pure
MPI, but as noted above large improvements have been made for the mixed-mode
code.

e In the communication-bound regime, we also expected a 10% improvement.

It is difficult to draw general conclusions about performance in the communication-
bound regime from the H20-64 data. The best case performance (2 threads per
process, 512 total cores) has been increased by 4%, but in other cases the mixed-
mode code performs slightly worse that before. For H20-1024 at the highest cores
count tested (4096) the newer code performs 6% faster than the Oct 2010 version
for pure MPI, but 4% worse with 2 threads per process.



3 DBCSR Optimisation

DBCSR (Distributed Block Compressed Sparse Row) is a library embedded within CP2K
which had been developed to provide a storage format and multipication operation for
the sparse block-structured matrices used within CP2K. Many of the large matrices
stored in CP2K (density matrix, overlap matrix, Kohn-Sham matrix etc.) are naturally
sparse due to the localisation of the Gaussian basis set in space. The block structure
arises from the fact that each atom may be represented by a number of basis functions.
Thus for a system with N atoms, typical matrices would have N rows (or columns) of
blocks, where each block itself comprises multiple rows (or columns) e.g. 1 for Hydrogen
with a minimal basis set (SZV-GTH-MOLOPT), or 13 for Oxygen with a larger basis
set (DZV-GTH-MOLOPT). Thus the entire matrix is composed of rows and columns
of small dense blocks of varying size. Blocks are addressed using a CSR storage format
where an indivdual block can be accessed via a pointer to the start of it’s row, plus an
offset into the row for that block. The matrices are distributed across MPI processes in
a 2D grid.

Matrix multiplication is performed using Cannon’s algorithm[8]. Briefly, to perform
the multiplication C = A x B where the matrices are distributed on a square grid of
P processes, there are v/P steps in the algorithm. At each step the local data area is
multiplied and acculumated into the result matrix, then row-wise and column-wise shifts
(for matrix A and B respectively) are performed using non-blocking MPI. This operation
is illustrated in figure 3.
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Figure 3: Example of Cannon’s algorithm in DBCSR for 9 processes (Image courtesy
Urban Borstnik)

The communication is performed using double-buffering - with calc and comm buffers
to hold current and next matrix data and index - as illustrated by the following pseu-
docode:



do i=1,nsteps
call mpi_waitall() - ensures communication from previous iteration
is complete (new data has arrived in current calc buffer,

comm buffer data has been sent)

post mpi_irecv() and mpi_isend() for column and row shifts - data is
sent from the current calc buffer, and received into the comm buffer

perform C += A x B on current calc buffers
comm and calc buffers are (pointer) swapped for next iteration

end do

In order to take advantage of OpenMP, DBCSR. decomposes the rows of blocks of a
matrix over the available team of threads. Load balancing is achieved by assigning rows
to threads so that the total number of blocks per thread is approximately equal (since in
a sparse matrix, each row may now have the same number of non-zero blocks). Matrix
rows are then reordered so each thread’s rows are contiguous in memory.

3.1 Node-local data multiply

Initially, when multiplying two matrices (or sub-matrices), DBCSR would perform a loop
over rows of the left (A) matrix, and for each block, loop over all blocks in the corre-
sponding column of the right matrix (B), accumulating the products into the appropriate
block of C. The individual block multiplications were performed by DGEMM from the
system-provided BLAS (or Fortran MATMUL if not available). In fact, as the blocks of
the matrix are traversed, instead of multiplying individual blocks, the parameters for the
multiplication (block pointers, sizes) are added to a stack, which is then processed once
it reaches a certain size. This allows better use of cache by alternating between accessing
the index (building the stack) and accessing the data (processing the stack) in a more
granular fashion. A stack limit of 1000 is used as a default, but may be overridden by
setting the MM_STACK_SIZE variable in the GLOBAL / DBCSR section of the input file

3.1.1 Recursive multiplication

The linear multiplication described above exhibits poor use of cache, since blocks of the B
matrix will be accessed several times - once for every block in the corresponding column
of A - but not necessarily soon afterwards (poor temporal locality). In addition, since the
A matrix is accessed by row and B by column one of these will stride irregularly through
memory (poor spatial locality). To overcome these problems a recursive multiplication
scheme was implemented which makes divides up the matrices by halves until the block



size is below a preset limit. At this base case of the recursion, the multiplication param-
eters for the blocks in this section of the matrices are pushed onto the stack (which may
be executed if it has grown large enough). Choosing when to stop recursing is a trade-off
between overhead of further recursion steps, and the cost of poor memory locality by
operating on too large a section of the matrix. The controlling parameter norec defines
the maximum number of matrix blocks the recursion will terminate at. Experiments
were performed to tune this parameter using dense matrices of size 2000x2000 and vary-
ing block sizes (see figure 4). The graph shows that relatively small numbers of blocks
should be processed at once, indicating the recursion is not too expensive in most cases.
A value of 512 was chosen as a reasonable compromise. The new algorithm was first
tested as a standalone code before being integrated into the main CP2K code. Results
in the graph are taken from the stand-alone code.

Tuning value of norec for various block sizes
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Figure 4: Tuning the recursion parameter (Performance for various block sizes)

3.1.2 SMM

At the same time, before introducing the recursive multiplication into the main code,
another new feature was introduced - a specialised small matrix multiplication library
‘libsmm’. In CP2K the sizes of the matrix blocks depend on the atomic species being
simulation and the basis set. Typically, this results in small blocks with unusual sizes such
as 1x4, 5x13, 9x22 etc. Libsmm takes an autotuning approach to producing specialised
DGEMM routines for a specified set of small matrix sizes:

Firstly for a set of ‘tiny’ block sizes (typically 1 up to 12) a set of different loop
permutations and unrollings is generated for each combination of block sizes (m,nk),




where matrix C ism by n, A isn by k and B is k by m. E.g. for m=2, n=3, k=5 the
canonical multiplication loop is:

D0 j=1, 3, 1
DO i=1, 2,1
DO 1=1, 5, 1

C(i+0, j+0)=C(i+0, j+0)+A(i+0,1+0)*B(1+0, j+0)
ENDDO
ENDDO
ENDDO

There are six possible loop permutations (ijl, jil, ilj, jli, lij, 1ji) and for each permuta-
tion it is possible to unroll any combination of the loops e.g. for the above loop ordering
the first three possible unrollings are:

DO j=1, 3,1

bOoi=1, 2, 1

1=1
C(i+0, j+0)=C(i+0, j+0)+A(i+0,1+0)*B(1+0, j+0)
C(i+0,j+0)=C(i+0,j+0)+A(i+0,1+1)*B(1+1,j+0)
C(i+0, j+0)=C(i+0, j+0)+A(i+0,1+2)*B(1+2, j+0)
C(i+0, j+0)=C(i+0, j+0)+A(i+0,1+3)*B(1+3, j+0)
C(i+0,j+0)=C(i+0,j+0)+A(i+0,1+4)*B(1+4,j+0)

ENDDO

ENDDO

j=1
po i=1, 2 , 1
DO1=1,5 , 1
C(i+0, j+0)=C(i+0, j+0)+A(i+0,1+0)*B(1+0, j+0)
C(i+0, j+1)=C(i+0, j+1)+A(i+0,1+0)*B(1+0, j+1)
C(i+0, j+2)=C(i+0, j+2)+A(i+0,1+0)*B(1+0, j+2)
ENDDO
ENDDO

j=1

poi=1, 2 , 1

1=1
C(i+0, j+0)=C(i+0, j+0)+A(i+0,1+0)*B(1+0, j+0)
C(i+0,j+0)=C(i+0,j+0)+A(i+0,1+1)*B(1+1,j+0)
C(i+0, j+0)=C(i+0, j+0)+A(i+0,1+2)*B(1+2, j+0)
C(i+0,j+0)=C(i+0,j+0)+A(i+0,1+3)*B(1+3,j+0)
C(i+0, j+0)=C(i+0, j+0)+A(i+0,1+4)*B(1+4, j+0)
C(i+0, j+1)=C(i+0, j+1)+A(i+0,1+0)*B(1+0, j+1)




C(i+0, j+1)=C(i+0, j+1)+A(i+0,1+1)*B(1+1, j+1)
C(i+0, j+1)=C(i+0, j+1)+A(i+0,1+2)*B(1+2, j+1)
C(i+0, j+1)=C(i+0, j+1)+A(i+0,1+3)*B(1+3, j+1)
C(i+0,j+1)=C(i+0,j+1)+A(i+0,1+4)*B(1+4,j+1)
C(i+0,j+2)=C(i+0, j+2)+A(i+0,1+0)*B(1+0, j+2)
C(i+0,j+2)=C(i+0,j+2)+A(i+0,1+1)*B(1+1,j+2)
C(i+0, j+2)=C(i+0, j+2)+A(i+0,1+2)*B(1+2, j+2)
C(i+0,j+2)=C(i+0,j+2)+A(i+0,1+3)*B(1+3,j+2)
C(i+0, j+2)=C(i+0, j+2)+A(i+0,1+4)*B(1+4, j+2)
ENDDO

In the case where m,n or k are not prime, it is possible to partially unroll the loops
(e.g. a 4-fold loop may be unrolled by 2 or by 4). For the largest block sizes consid-
ered (12,12,12) there are 540 permutations that are automatically generated. Each of
these variants is then run (for long enough to perform 1 GFLOP) and the performance
(GLOP/s) is recorded. The particular loop structure which generated this performance
is then recorded.

Recognising that for larger block sizes, the number of combinations to be tested will
grow rapidly, in the second stage of autotuning a different set of ‘small’ block sizes are
used - these are the sizes that will be supported by the final library, and can be chosen
by the user to match block sizes they expect to be used by CP2K as a result of the
particular system they are simulating. By default the set of m,nk are 1, 4, 5, 6, 9, 13,
16, 17 and 22.

Again for each possible combination of m,n.k, a set of 7 multiplication procedures
are generated:

e tiny version (or canonical loop, if not available)
e Fortran MATMUL
e Library DGEMM

e 4 recursive variants with base cases terminating in good-performing tiny mults

Similarly to before, each of the permutations is then run (for 10 GLOPs) and the
performance is measured. The best variant for each of the small sizes is then compiled
into an individual object file and added to the library. Note that in some cases, partic-
ularly for large block sizes, library DGEMM may give the best performance. Because
of this, CP2K still needs a BLAS library when linking with libsmm in order to resolve
these fall-though cases. A wrapper routine is also included such that SMM can be called
for any sizes of m,n,k and if these are not supported directly in the library, will call
directly to BLAS. The entire library compilation is controlled by a set of scripts and
makefiles, allowing it to run in parallel on a single node on the HECToR compute nodes.
Compilation of the library took around 2 hours 15 minutes using the default set of ‘tiny’
and ‘small’ sizes.

Finally, the library routines are then tested against the supplied BLAS library, both
to check performance and correctness. Results of this test are shown in figure 5, taken



from a compilation on the XE6 TDS system. Especially for small block sizes (or blocks
where one or more dimensions is small) we find that libsmm outperforms the BLAS in
Cray’s libsci by up to 10 times. Similar results have been found comparing with e.g.
MKL on an Intel platform. For larger block sizes, the performance tends towards Libsci
BLAS indicating that a faster method could not be found. It should be noted that in the
limit of very large blocks (1000x1000), DGEMM achieves around 12.8 GLOP /s, which is
around 5.5 FLOPs/cycle, indicating that the library is making use of the AMD Bulldozer
architecture’s FMA4 instructions since for these tests only a single thread is running.

Libsmm vs. Libsci DGEMM Performance
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Figure 5: Comparing performance of SMM and Libsci BLAS for block sizes up to 22,22,22

Libsmm is distributed with the CP2K source package, and a version of the library
optimised for the current HECToR Phase 3 ‘Interlagos’ processors can be found in
/usr/local/packages/cp2k/2.3.15/1ibs/1libsmm/.

3.1.3 Threading

Recall that DBCSR matrices are decomposed by rows, which each row being ‘owned’
by a specific OpenMP thread. The current load balancing strategy (rows are assigned
weighted by the block size of each row) results in some load imbalance since it does not
take account of the sparsity of each row.

When investigating how to improve the load balance it was discovered that thread 0
was consistently taking longer than the other threads by up to 20% (even for artificial in-
puts which are perfectly load balanced). Careful inspection of the code revelead this was
due to timing routines called by every thread which contained !$omp master directives.
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Row sizes only(CVS) | Row block counts
Thread | Blocks Time(s) | Blocks Time(s)
25806281 | 895.52 23249480 | 921.14
23278623 | 868.15 23271941 | 813.60
21799888 | 758.59 23284712 | 788.97
26823318 | 1050.02 23261575 | 896.97
15986481 | 629.71 23254617 | 1003.18
25902624 | 995.68 23274890 | 813.44

T W N~ O

Table 1: Comparison of load balancing strategies

These were removed from the recursive part of the multiplication, since timing detail at
this level is not of interest to users, and can be obtained via profiling if necessary.

To achieve a better load balance using the total number of blocks in a (distributed
row) as the criteria for assigning rows to threads was investigated. This achieves a good
overall load balance of FLOPs for matrix multiplication (see table 1). However, due to the
multiple steps involved in the Cannon’s algorithm multiplication, when DBCSR is used
for more than one MPI process, each local multipication is still not guaranteed to be load
balanced, and in fact significant load imbalance is observed, leading to poor scaling of the
multipication with larger thread counts. In addition, calculating the number of blocks
per row requires an MPI_Allreduce per processor row which incurs some synchronisation
cost. As a result, this load balancing method was not added to CVS.

Since this load imbalance is intrinsic to the idea of having threads ‘own’ fixed rows
of the matrix, two further modifications to the threaded multiplication were proposed to
allow threads to share access to the result (C) matrix in more flexible manner:

1. Using OpenMP 3 tasks, create a task for each leaf of the recursive multipication,
ensuring that the recursion terminates such that there are many more tasks than
threads. Then in each task, take a lock on the corresponding area of the C matrix
to protect against concurrent update from another thread. Testing in the stan-
dalone code showed that generating and executing the tasks did not give too much
overhead, especially when the number of thread is small i.e. within a single NUMA
region so that memory access is not an issue (see figure 6, showing performance
of the standalone test code). However, the addition of the locking overhead was
roughly equivalent to the cost of the load imbalance, so this was not integrated
into the main code.

2. In the process of adapting DBCSR to use GPUs (HP2C-funded work by Urban
Borstnik, Univ. Zurich) an extra layer of indirection was added - queues of the
multiplication parameter stacks. It was proposed that as the matrices are recu-
sively divided, a queue is created for every resulting sub-matrix. Each thread fills
the stacks corresponding to its parts of the matrix, following the current thread
distribution, and puts them in the appropriate queue. The threads then process
queues independently (preferentially by the thread that filled the queue), but with
the possibility that if a thread has no work left in its queues it can start processing
queues filled by other threads. This avoids the overhead of locking since only a
single queue every writes to a given area of the C matrix, and load balancing is
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Figure 6: Performance of OpenMP tasked version against ideal SMM on 24-core XEG6
(CSCS)

achieved by dynamic ‘work-stealing’. This method also avoids the current overhead
of merging each threads private ‘work matrix’ since all threads could now write
directly to a shared data area. While this idea seems in principle to solve all the
current load balance problems, it would very complex to implement and so was
not attempted in the scope of this project

3.2 MPI data exchange

Craypat profiling indicated that the majority of time spent in MPI during the multipli-
cation loop was in MPI_Waitall, with quite a large imbalance (some processes spending
up to 6 times longer than the fastest), although the amount of data sent from one
process to another is well balanced, as is the computation performed by each process
between communications. Even though the existing double-buffering allows computa-
tion to take place while communication for the next iteration is ongoing, the MPI_Isend
and MPI_Irecv calls are posted at the same time. If the recieves could be pre-posted
far enough in advance it was hoped this might reduce the time spend in MPI_Waitall
by reducing the need for additional data copies for unexpected messages (arriving be-
fore the corresponding recieve is posted). This was done by posting the recieve a whole
iteration earlier than the corresponding send (and two whole iterations before it was
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due to complete). Unfortunately, this did not reduce the time spent it MPI_Waitall as
expected.

Another experiment to determine if the wait time was due to message latency (i.e.
genuinely waiting because the message had not arrived from the remote process) was
carried out. Here the local multiplication step was made arbitrarily long by sleeping for
several seconds after actually carriying out the multiplication. This also did not affect
the amount of time in MPI_Waitall, so it was determined that the cost of the waitall must
be due to work that could only be done when MPI was called (i.e. requiring the MPI
progress engine), rather than asynchronous DMAs or similar, although exactly what was
occurring is not clear.

Given that this cost is fixed, we implemented a scheme whereby during the multi-
plication, the master thread would periodically poll MPI by making MPI_Testany calls.
This has two advantages - firstly at least while the MPI processing was ongoing, other
threads were doing useful work (rather than having the other N-1 threads idle during
the Waitall). Secondly, since each local multiplication may be be somewhat load imbal-
anced, if thread 0 is underloaded then the MPI_Testany calls become essentially free as
they simply take up some of the slack time that would be spent waiting for other thread
to complete. To account for the case where the polling of MPI takes significantly longer
than the available slack time, it is possible for the user to manually underload the master
thread by a specified amount. This behaviour is controlled by two new variables in the
input file (in the GLOBAL / DBCSR section):

e USE_COMM_THREAD

During multiplication, use a thread to periodically poll MPI to progress outstand-
ing message completions. This optional keyword cannot be repeated and it expects
precisely one logical. Default value: .TRUE.

e COMM_THREAD_LOAD

If a communications thread is used, specify how much multiplication workload
(%) the thread should perform in addition to communication tasks This optional
keyword cannot be repeated and it expects precisely one integer. Default value:
100

The performance of CP2K with and without the comm thread enabled is shown in
figure 7. The benchmark used here is a 6144 atom calculation of liquid water using
the new linear-scaling DFT[6] implementation, which is strongly dominated by DBCSR
operations as it performs SCF via iterations on the density matrix. Here we see that
using a Communications thread can give up to a 13% improvement when used with
two threads up to 20% wthen using six threads, even on relatively modest numbers of
processors. At 2304 cores and above, underloading the comm thread to 80% is also
shown to give an improvement over the default settings.

3.3 Data preparation for multiplication

The third aspect of DBCSR that was investigated was the preparation step that occurs
before every matrix multiplication, found in the DBCSR routine make_images. This
essentially subdivides each local sub-matrix into a 2D-array of ‘images’, such that the
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Figure 7: Performance of linear scaling DFT with and without communications thread
enabled (24-core XE6, CSCS)

global set of images is square, and thus suitable for Cannon’s algorithm. For example,
when using 6 MPI processes (arranged in a 2x3 grid), each process will have an array of
3x2 images, giving a total of 6x6 images globally. In addition, the first column and row
shifts (pre-shifts) of Cannon’s algorithm are performed. If a matrix is symmetric, blocks
which are stored only once in the initial matrix are desymmetrized and stored twice as
they may be sent to different processes. Once the destination (either local or remote) is
determined, data is copied into buffers and sent to the recieving process. The recieved
data in general will have come from a variety of different processes, and so the blocks
are sorted into the correct CSR order and the index is rebuilt using the dbcsr_finalize
routine, normally used for merging work matrices from multiple threads together.

Using the CrayPAT API to profile sub-regions within this routine the largest contri-
bution to the runtime comes from dbcsr_finalize. A special case of this routine was
written to account for the fact that rather than merging data from several threads’ work
matrices, we instead have only a single work matrix which contains unsorted blocks. We
also avoid having to account for the case were the matrix being merged into already
has existing blocks, since all the blocks making up the new image come from the MPI
recieve buffer. As a result of this, and a number of other smaller OpenMP optimisations,
results in a speedup in cases where there is more than one image (i.e. the number of
MPI processes is not a square) - 8% faster for 128 MPI x 2 OMP, and 43% faster for 32
MPI x 8 OMP.
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Threads 1 2 4 8

sort+merge 0.99 | 1.35 | 1.89 | 1.84
sort only 0.99 | 1.65 | 2.67 | 2.78
Magny-Cours | 0.99 | 1.54 | 2.43 | 2.48
Parallel data | 0.99 | 1.44 | 2.37 | 2.94

Table 2: Speedup vs CP2K sort on 1 thread (10,000 elements)

The majority of the time taken by the new finalize routine, and the routine used when
there is only one image is taken up by sorting the recieved blocks into CSR order (first
by row, then by column). This is currently done using an efficient quicksort, but only
uses a single thread. A threaded sort (parallel mergesort) was implemented following
[11] using the existing quicksort as the base case an the parallel merge from [12].

This gives poorer than expected results for typical list sizes of 10,000 elements (see
table 2). One reason for this is related to the shared 'module’ structure of the AMD
Interlagos processor. If we run on the Magny-Cours processor, where every core has it’s
own FPU, instruction unit etc. we see much better performance (see third row of the
table). In addition since we are sorting an array that has been written by MPI (i.e.
a single thread), there is a penalty in accessing the data. If the data were written in
parallel, so each thread has it’s own portion of the array in cache at the start of the sort,
better performance is achieved. However, this is not possible in practice and only serves
to put an upper limit on the performance of the parallel sort. Larger array sizes give
greater speedups (e.g. 2.78x on 4 threads with 100,000 elements), however, with smaller
sizes such as 1,000 there is no speedup at all. With more work it might be possible to
construct a heuristic on when to use the parallel sort (and with how many threads), but
for now the CP2K sort has been left unchanged.

4 Recommendations for users

In addition to providing recent versions of CP2K on HECToR (see
http://www.hector.ac.uk/support/documentation/software/cp2k/ for details) contain-
ing the improvements described in this report, below are some general points of advice
for users wishing to achieve best performance from CP2K on HECToR. Of course, noth-
ing substitutes for careful benchmarking on a shortened version of the problem you are
trying to solve (for example performing only a single MD step, or a reduced number of
SCF cycles).

e Using the right number of MPI processes

Firstly, try to choose a number of MPI processes that is a square, to maximise the
performance of DBCSR (see section 3.2. Secondly, use whole nodes (multiples of
32 cores on HECToR Phase 3). Thirdly, if possible choose a number of processes
that is a power of two. Following these guidelines, better performance might be
obtained on 64, 256, 1024 MPI processes, depending on problem size.

e Use libsmm

As discussed in section 3.1.1, using libsmm can give significant performance im-
provements over regular BLAS DGEMM for simulations involving small block
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sizes (elements with low atomic number, small basis sets). The centrally-installed
CP2K package is linked with libsmm, or if you wish to build your own ver-
sion from source, pass -D__HAS_smm_dnn to the compiler, and link the library in
/usr/local/packages/cp2k/2.3.15/1ibs/1libsmm/

e Use OpenMP

For large problem sizes in particular, or on large numbers of cores, using perhaps
2 or 4 OpenMP threads per MPI process may give better performance than pure
MPI. OpenMP may also be of use for problems requiring large amounts of memory,
where otherwise nodes would hve to be underpopulated. An OpenMP-capable
binary of CP2K (cp2k.psmp) is provided in the CP2K package on HECToR. If
using OpenMP, consider experimenting with the communication thread settings as
described in section 3.1.3, which may provide further speed improvements. In some
cases (particularly on small numbers of cores, where the compute to communication
ratio is high, it may be beneficial to switch the comm thread off).

Finally, for any issues regarding CP2K on HECToR please contact the HECToR
helpdesk helpdesk@hector.ac.uk.

5 Conclusion

After three consecutive rounds of dCSE funding we have shown that real improvements
in the performance of CP2K have been delivered to HECToR, users, in addition to the
functionality of the code being extended over time by other developers. We consider that
the extended funding of an HPC expert to work closely with both code developers and
users is an excellent model for sustainable applications development. Evidence of this is
the large number of users who have been assisted in using the code on HECToR, as well as
further development projects including an MSc student[13] working on improving GPU
support in the code, and 16 months of PRACE funding[14][15] to improve scalability into
the petascale regime. Both these projects are also of benefit to HECToR users and would
have been impossible without initial support from the dCSE scheme to build familiarity
with the code.
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